Date: 28/11/2019
Time: 02:00 pm to 04:30 pm
Total Marks: 60

Semester: 3
Subject Code: 11204202
Subject Name: Numerical Methods and Analog Electronics

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q.1. A) Attempt any one of the following.

(a) Use Euler's method to solve $d y / d x=x+y, y(0)=1$; Compute $\mathrm{y}(0.1), \mathrm{y}(0.2), \mathrm{y}(0.3)$ and $\mathrm{y}(0.4)$.
(b) $d y / d x=y-x$, where $\mathrm{y}(0)=2$, find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$, using RK-4 formula
Q.1. B) Attempt any two of the following.
(a) Do as directed.

1. Explain Picard's method in brief.
2. Give $\mathrm{k} 1, \mathrm{k} 2, \mathrm{k} 3$ and k 4 in RK-4 method.
(b) $y^{\prime}=x-y, y(0)=1$, find $y(0.1)$ using modified Euler's method.
(c) Explain Gauss-Seidel method to solve Laplace's equation, with suitable example.

Q.2. A) Do as directed.

(a) Attempt any one.

1. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$; subject to the initial condition $u=\sin \pi x$ at $t=0$ for $0 \leq x \leq 1$ and $u=0$ at $\mathrm{x}=0$ and $x=1$ for $t>0$, by Gauss- Seidel method.
2. From the Taylor series for $y(x)$, find $y(0.1)$ correct to four decimal places if $y(x)$ satisfies $y^{\prime}=x+y$ and $y(0)=1$.
(b) Use Picard's method to solve the equation $y^{\prime}=1 / x+y$ subject to $y(0)=1$.
Q.2. B) Do as directed. (Any two)
(a) Answer the following in short.
3. Name the simplest predictor-corrector method.
4. Why do we need modified Euler's method?
5. In \qquad method, we approximate the curve of solution by the tangent in
each interval. (Picard's/ Euler's)
(b) Give the formula for (i) Jacobi's method (ii) Gauss-Seidel method to solve Laplace and Poisson's equations.
(c) $y^{\prime}=x-2 y, y(0)=1$, find $y(0.1)$ using RK-4 method.
Q.3. A) Attempt any one.
(a) Draw the root locus for the system $G(s)=4 K /\{(s-1)(s-2)(s-3)\} ; H(s)=1$.
(b) Explain: (i) basic operation of PLL. (ii) PLL as demodulator.
Q.3. B) Answer the following questions (Any two)
(a) Do as directed
6. Draw the circuit for current booster.
7. Draw the circuit for positive high voltage IC regulator.
(b) Draw pole-zero diagram for the system $G(s)=4 s /\{(s-1)(s-2)(s-3)\}$
(c) Draw the functional block diagram of IC 723 voltage regulator and explain its working as a
basic low voltage regulator.
Q.4. A) Answer the following questions.
(a) Do as directed.
8. Define: (i) -3 dB frequency (ii) roll-off rate
9. Draw the circuit for first order low-pass Butterworth filter.
(b) Explain the circuit and frequency response for a wide band reject filter.
Q.4. B) Answer the following questions (Any two)
(a) Short questions
10. Define rise time.
11. Write any one application for sample-hold circuit.
12. Give the full form of PLL.
(b) Short note: Logarithmic amplifiers.
(c) Short note: comparators.
