Semester: 1/7

PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc./IMSC, Winter 2019-20 Examination

Enrollment No: _____

Date: 02/12/2019

Semester: 1/7 Subject Code: 1120/102	Date: $\frac{12}{2019}$
Subject Code: 11204102 Subject Name: Classical Mechanics I & Statistical Mechanics	Time: 10:30 am to 01:00 pm Total Marks: 60
Subject Particle Classical Preclames F & Statistical Preclames Instructions: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start new question on new page.	
 Q.1. A) Essay type/ Brief note (4x2) (Each of 04 marks) (a) Derive the Canonical transformation equation using the generating F(q,P,t). (b) Derive the canonical equation in term of Poisson bracket. 	(08) function F(q,Q,t) and
 Q.1. B) Answer the following questions (Any two) (a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) (1 1. Define Poisson bracket 2. Define eigen vector and eigen frequency. 	Each of 02 marks) (04)
(b) Explain the separation of variable in the Hamilton Jacobi equation.(c) Briefly explain the small oscillation of the particle on string.	(04) (04)
 Q.2. A) Answer the following questions. (a) Short note/ Brief note (2x2)/ Fill in the blanks. (Each of 02 marks) 1. Write down the Hamiltonian equation of motion 2. Write down the general case of coupled oscillation 	(04)
(b). Explain the application of Euler's angle in the heavy symmetric top	o. (04)
Q.2. B) Answer the following questions (Any two) (a) Short note/ Multiple choice questions. (Each of 01 marks) 1. Lagrangian L is: (A) $L = \sum p\dot{q} - H$ (B)	(03) $L = \sum p\dot{q} + H$
(C) $L = \sum pq - H$ (D) 2. For a transformation to be canonical, if: (A) Poisson bracket changes sign (B) Poisson bra	$L = \sum p\dot{q}$ cket becomes zero cket becomes invariant
(A) $Ce^{i\omega t}$ (B) $Ce^{i\omega t}$ (C) $Ce^{i\omega t}$ (b) Derive the expression of Hamilton Jacobi equation. (c) Define and explain the Euler's angle.	ωt (D) Ce ^{iωt} (03) (03)
 Q.3. A) Essay type/ Brief note (4x2) (Each of 04 marks) (a) Explain the power spectrum of fluctuation and their correlation. (b) Explain the first order phase transition 	(08)
 Q.3. B) Answer the following questions (Any two) (a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) 1. Write down the statement of fluctuation-dissipation theorem. 2. Draw a Phase transition diagram for water. 	(Each of 02 marks) (04)
(b) Explain the Brownian motion of particles.(c) Describe the Vander Walls theory of liquid condensation.	(04) (04)
 Q.4. A) Answer the following questions. (a) Short note/ Brief note (2x2)/ Fill in the blanks. (Each of 02 marks) 1. Fokker Planck equation is	(04)
(b) Describe the theory of Ising model.	(04)

Q.4. B) Answer the following questions (Any two)

(a) Short note/ Multiple choice questions. (Each of 01 marks)			(03)	
1. The Gibbs free energy	vis:			
(A) $G = H + TS$	(B) G = H - TS	(C) $G = TS$	(D) None of these	
2. Latent heat is:				
(A) T- S	(B) T+ S	(C) T/ S	(D) T S	
3. Shot noise is related to) :			
(A) Sound vibrat	ion	(B) During th	e generation of waves	
(C) fluctuation due to discrete charge		(D) None of t	these	
carriers				
(b) State and explain Wiener - Khinching theorem.		(03)		
(c) Write down the condition	n of Phase equilibrium.			(03)