FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester: 1

Date: 11/05/2019
Subject Code: 03191101
Time: 02:00 pm to 04:30 pm
Subject Name: Mathematics-I
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 Objective Type Questions : (All are compulsory) (Each of one mark)

1. According to De-Movire's theorem, for any rational number $\mathrm{n},(\boldsymbol{\operatorname { c o s }} \theta+i \sin \theta)^{n}=$ \qquad .
(a) $\cos n \theta+i \sin n \theta$
(b) $\cos n \theta$
(c) $\cos n \theta+i \sin \theta$
(d) $\cos n \theta-i \sin n \theta$
2. If $A=-A^{T}$, then the Matrix A is called
(a) Symmetric
(b) Skew-symmetric
(c) Hermitian
(d) Skew-Hermitian
3. Find the product of $(4+i)$ and $(4-i)$.
(a) 15
(b) 17
(c) $\sqrt{17}$
(d) 16
4. The volume of a solid generated by revolving the curve $f(x, y)=0$ about y-axis is given by
(a) $\int_{a}^{b} \pi y^{2} d x$
(b) $\int_{a}^{b} y^{2} d x$
(c) $\int_{a}^{b} \pi x^{2} d x$
(d) $\int_{a}^{b} x^{2} d y$
5. Suppose that $f(x, y)$ and its first and second partial derivative are continuous throughout a disk centered at (a, b) and that $f_{x}(a, b)=f_{y}(a, b)=0$. Then, for $r=\frac{\partial^{2} f}{\partial x^{2}}, s=\frac{\partial^{2} f}{\partial x \partial y}, t=\frac{\partial^{2} f}{\partial y^{2}} f$ has a saddle point at (a, b) if
(a) $r t-s^{2}>0$
(b) $r t-s^{2}<0$
(c) $r t-s^{2}=0$
(d) None of these
6. Let $\sum a_{n}$ be a series with $a_{n} \geq 0$ for $n \geq N$ and suppose that $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L$ then the series converges if \qquad -.
7. If the tangents are real and coincident, then the double point is called a \qquad -.
8. The curve $y^{2}=x$ is symmetric about x -axis. (True/ False)
9. If $u=y^{2} e^{\frac{y}{x}}+x^{2} \tan ^{-1}\left(\frac{x}{y}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$ \qquad .
10. Find the rank of the matrix $\left[\begin{array}{cc}-1 & 2 \\ 2 & 3\end{array}\right]$.
11. Find the Jacobian $\frac{\partial(u, v)}{\partial(x, y)}$ for $u=x^{2}-y^{2}, v=2 x y$.
12. If $y \sin x=x \cos y$, find $\frac{d y}{d x}$.
13. The Eigen values of $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$ is \qquad .
14. Test the Convergence of the sequence $\left\{2^{n}\right\}$.
15. Test the convergence of series $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$
Q. 2 Answer the following questions: (Attempt any three)
A) Solve following system of linear equations by Gauss Jordan method $x+2 y+z=5 ;-x-y+z=2 ; y+3 z=1$
B)

Test the convergence of the series $\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\cdots$
C) If $u=\log (\tan x+\tan y+\tan z)$, then show that $\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=2$.
${ }^{\mathrm{D})}$ For $Z=1-i$, find the $\operatorname{Arg}(\mathrm{Z}), \arg (\mathrm{Z})$ and convert it in to polar form.
Q.3(A) Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
(B) (i) Find the limit, if it exists: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$
(ii) Find the equation of the tangent plane and normal line to the surface $z+8=x e^{y} \cos z$ at the point $(8,0,0)$.

OR

(B) (i) Using slicing method, find the volume of the solid obtained by rotating about the x -axis
the region under the curve $y=\sqrt{2 x}$ from 0 to 1 .
(ii) Find the whole area bounded by the circle $r=2 a \sin \theta$.
Q.4(A) (i) Prove that $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{2}+1}$ is divergent
(ii) Test the convergence of series $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+5}\right)^{n}$

OR

(A) Trace the curve $r=2(1+\cos \theta)$
(B) (i) Prove that $\frac{(\cos 5 \theta-i \sin 5 \theta)^{2}(\cos 7 \theta+i \sin 7 \theta)^{-3}}{(\cos 4 \theta-i \sin 4 \theta)^{9}(\cos \theta+i \sin \theta)^{5}}=1$
(ii) If $f(x, y)=x^{3}+y^{3}-2 x y^{2}$, find $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ of f at $(1,-1)$

