Seat No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Summer 2018 - 19 Examination

Enrollment No:

B. Tech. Summer 2018 - 19 Ex Semester: 1	Date: 11/05/2019
Subject Code: 03191101 Subject Name: Mathematics-I	Time: 02:00 pm to 04:30 pm Total Marks: 60
Instructions:1. All questions are compulsory.2. Figures to the right indicate full marks.3. Make suitable assumptions wherever necessary.4. Start new question on new page.	
Q.1 Objective Type Questions : (All are compulsory) (Each of a 1. According to De-Movire's theorem, for any rational number in the second se	
(a) $\cos n\theta + i \sin n\theta$ (b) $\cos n\theta$ (c) $\cos n\theta + i \sin \theta$	$in \theta$ (d) $cos n\theta - i sin n\theta$
2. If $A = -A^{T}$, then the Matrix A is called (a) Symmetric (b) Skew-symmetric (c) Hermitia 3. Find the product of $(4 + i)$ and $(4 - i)$.	n (d) Skew-Hermitian
	(d) 16
4. The volume of a solid generated by revolving the curve $f(x, y)$ (a) $\int_{a}^{b} \pi y^{2} dx$ (b) $\int_{a}^{b} y^{2} dx$ (c) $\int_{a}^{b} \pi x^{2} dx$	$(a) \int_{a}^{b} w^{2} dw$
(a) $\int_a ny^2 dx$ (b) $\int_a y^2 dx$ (c) $\int_a nx^2 dx$ 5. Suppose that $f(x, y)$ and its first and second partial derivativ	
centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then, for	
saddle point at (a, b) if (a) $rt - s^2 > 0$ (b) $rt - s^2 < 0$ (c) $rt - s^2 = 0$	(d) None of these
^{6.} Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$ and suppose that	$\lim_{n \to \infty} a_n ^{\frac{1}{n}} = L$ then the series
converges if 7. If the tangents are real and coincident, then the double point is 8. The curve $y^2 = x$ is symmetric about x-axis. (True/ False) ^{9.} If $u = y^2 e^{\frac{y}{x}} + x^2 \tan^{-1}\left(\frac{x}{y}\right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$	
^{10.} Find the rank of the matrix $\begin{bmatrix} -1 & 2\\ 2 & 3 \end{bmatrix}$.	_
¹¹ . Find the Jacobian $\frac{\partial(u,v)}{\partial x}$ for $u = x^2 - y^2$, $v = 2xy$.	
^{12.} If $ysinx = xcosy$, find $\frac{dy}{dy}$.	
12. If $ysinx = xcosy$, find $\frac{dy}{dx}$. 13. The Eigen values of $\begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6 \end{bmatrix}$ is	
14. Test the Convergence of the sequence $\{2^n\}$.	
15. Test the convergence of series $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$	
Q.2 Answer the following questions: (Attempt any three) A) Solve following system of linear equations by Gauss Jordan n x+2y+z=5; -x-y+z=2; y+3z=1	nethod (15)
B) Test the convergence of the series $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots$	
C) If $u = \log(\tan x + \tan y + \tan z)$, then show that $\sin 2x \frac{\partial u}{\partial x}$.	$+\sin 2y\frac{\partial u}{\partial y} + \sin 2z\frac{\partial u}{\partial z} = 2.$
D) For $Z = 1 - i$, find the Arg (Z), arg (Z) and convert it in to p	olar form.

	0	1	1	
$\mathbf{Q.3}(A)$ Find the Eigen values and Eigen vectors of the matrix A=	1	0	1	(07)
	_1	1	0	

(B) (i) Find the limit, if it exists:
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$$
 (04)

(ii) Find the equation of the tangent plane and normal line to the surface $z + 8 = xe^y cosz$ (04) at the point (8,0,0).

OR

- (B) (i) Using slicing method, find the volume of the solid obtained by rotating about the x-axis (04) the region under the curve $y = \sqrt{2x}$ from 0 to 1. (04)
 - (ii) Find the whole area bounded by the circle $r = 2a \sin\theta$.

Q.4(A) (i) Prove that
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + 1}$$
 is divergent (03)

(ii) Test the convergence of series
$$\sum_{n=1}^{\infty} \left(\frac{n}{2n+5}\right)^n$$
 (04)

(A) Trace the curve $r = 2(1 + \cos \theta)$

(B)
(i) Prove that
$$\frac{(\cos 5\theta - i\sin 5\theta)^2 (\cos 7\theta + i\sin 7\theta)^{-3}}{(\cos 4\theta - i\sin 4\theta)^9 (\cos \theta + i\sin \theta)^5} = 1$$
 (04)

(ii) If
$$f(x, y) = x^3 + y^3 - 2xy^2$$
, find $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$ of f at (1,-1) (04)