PARUL UNIVERSITY **FACULTY OF ENGINEERING & TECHNOLOGY** B.Tech. Summer 2017 - 18 Examination

Semester: 1 **Subject Code: 03191101** Subject Name: Mathematics-I

Date: 06/06/2018 Time: 02:00 pm to 04:30 pm **Total Marks: 60**

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Select correct alternative: (Each of one mark)

1. If $A = \begin{bmatrix} 1 & 2 & 0 \\ 4 & -6 & 10 \\ 7 & -2 & 16 \end{bmatrix}$ then trace of A is _____. (a) 0 (b) 9 (c) 11 (d) cannot be determined

- 2. If n is any rational number, then $(\cos \theta + i \sin \theta)^n =$ (a) $\cos n\theta + i\sin n\theta$ (b) $\cos^n \theta + i\sin^n \theta$ (c) 1 (d) none of these
- **3.** A complex number *z* is real if _ (a) Im(z) = 0 (b) Re(z) = 0 (c) $Im(z) \neq 0$ (d) none of these
- 4. The area bounded by the x-axis and the curve y = f(x) for $a \le x \le b$, is equal to _____. (a) $\int_{a}^{b} f(x) dx$ (b) $\int_{a}^{b} x f(x) dx$ (c) $\int_{-\infty}^{\infty} f(x) dx$ (d) none of these **5.** A double point is called a node if the tangents to the curve at that point are _____
- (a) real and coincident (b) real and distinct (c) imaginary (d) none of these
- **6.** If $f(x, y) = x^2 y$, then find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial v}$. 7. Find the rank of the matrix $\begin{bmatrix} -1 & 3\\ \lambda & 2 \end{bmatrix}$.
- 8. Find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ for A = x y, v = x + y.
- 9. State whether the sequence $\{2^n\}$ is convergent or divergent.
- **10.** Find Arg(z) for z = 1 + i.
- 11. Reduce to the complex number $z = (1 i)^4$ to a real number.
- 12. If $u_n = \left\{\frac{1}{1+\frac{1}{n}}\right\}$ then find $\lim_{n \to \infty} u_n$.
- **13.** The matrix $\begin{bmatrix} 1 & 4 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ is in row echelon form. (State whether true or false.)

14. State whether the given curve $x = y^2$ is symmetric about x-axis or not.

15. If $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ then what are the Eigen values of A^2 ?

Q.2 Answer the following questions. (Attempt any three) A) Trace the curve $y^2(2a - x) = x^3, a > 0$.

B) Simplify using De Moivre's theorem: $\frac{(\cos 2\theta + i\sin 2\theta)^{\frac{2}{3}}(\cos \theta - i\sin \theta)^{2}}{(\cos 3\theta - i\sin 3\theta)^{2}(\cos 5\theta - i\sin 5\theta)^{\frac{1}{3}}}$ **C**) If $u = x^{3}y^{2}\sin^{-1}\left(\frac{y}{x}\right)$ then find (a) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ (b) $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial x\partial y} + y^{2}\frac{\partial^{2}u}{\partial y^{2}}$ **D**) Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}$.

(15)

(15)

- **Q.3** A) Find eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - **B**) Using Lagrange's method of undetermined multipliers, find the maximum value of $f(x, y, z) = (08) x^2 y^3 z^4$, subject to the condition x + y + z = 5.

B) (i) Find the limit if it exists:
$$\lim_{(x,y)\to(0,0)} \frac{OR}{\frac{xy\cos y}{3x^2+y^2}}$$
 (05)

(ii) Find the value of
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ at the point $(1, -3)$ if $f(x, y) = x^4 + 3x^2y + y^3 - 1$. (03)

Q.4 A) (i) The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$ and the x-axis is revolved about the x-axis to generate a solid. Find its volume. (05)

(ii) Discuss the convergence of
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{4^{2n}}$$
. (02)
OR

A) Find the area of the region enclosed between the x-axis and the graph of
$$f(x) = x^3 - x^2 - 2x$$
, $-1 \le x \le 2$. (07)

B) Test the convergence of: (i)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 2n}{5 + n^2}$$
 and (ii) $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots$ (08)

(07)