\qquad
\qquad

PARUL UNIVERSITY
 FACULTY OF APPLIED SCIENCE
 B.Sc., Summer-2017-18 Examination

Semester: 3

Date: 22/05/2018
Subject Code: 11106201
Time: 10:30am to 1:00pm
Subject Name: Solid Geometry

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q.1. A) Do as directed: (Each of $\mathbf{0 4}$ marks)
(a) Show that the points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are vertices of isosceles right-angle triangle.
(b) Find the equation of the plane through the points $(1,1,1)(1,-1,1)(-7,-3,-5)$.

Q.1. B) Answer the following questions (Any two)

(a) Answer the following

1. Find the shortest distance between lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$.
2. Find the condition for the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ intersect the curve $x y=c^{2}$.
(b) Find the equation of the sphere which touches the sphere $x^{2}+y^{2}+z^{2}-x+3 y+2 z-3=0$, at the point $(1,1,-1)$ and passes through the origin.
(c) Find the equation of the plane through the points $(1,0,-1),(3,2,2)$ and parallel to the line $x-1=\frac{y-1}{-2}=\frac{z-2}{3}$.

Q.2. A) Answer the following questions.

(a) Do as directed (Each of 02 marks)

1. Find the value of b , such that $O P \perp O Q$ where O is origin, $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(1, \mathrm{~b}, 1)$?
2. Obtain the equation of plane passing through the intersection of the planes
$x+2 y+3 z+4=0,4 x+3 y+2 z+1=0$ and the origin.
(b) Find the direction cosines of two lines which are determined by the relations

$$
\begin{equation*}
l+m-n=0 ; \quad m n+6 l n-12 l m=0 \tag{04}
\end{equation*}
$$

Q.2. B) Answer the following questions (Any two)

(a) Multiple choice questions (Each of 01 marks)

1. Which of the following triplet gives the direction cosine of line?
(a) $2,2,1$
(b) $2,-2,1$
(c) $2,2,-1$
(d) $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$
2. Which of the following represent cylinder in3- dimensional space?
(a) $x^{2}+y^{2}=4$
(b) $x^{2}+y^{2}+z^{2}=4, z=0$
(c) $x^{2}+y^{2}+z^{2}=4$
(d) None
3. The equation of z-axis is
(a) $\mathrm{z}=0$
(b) $\mathrm{z}=0 \mathrm{x}=0$
(c) $y=0, z=0$
(d) $x=0, y=0$
(b) Find the equation of sphere whose centre is on the line segment joining the points
$A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$.
(c) Put in symmetrical form, the equation of the line $3 x-y+z+1=0,5 x+y+3 z=0$.

Q.3. A) Answer the following (Each of $\mathbf{0 4}$ marks)

(a) Find the point where the line joining $(2,-3,1),(3,-4,-5)$ cuts the plane $2 x+y+z=7$.
(b) Show that the lines $\frac{x+5}{3}=\frac{y+4}{1}=\frac{z-7}{-2} ; 3 x+2 y+z-2=0 . x-3 y+2 z-3=0$ are coplanar and the find the equation of plane in which they lie.

Q.3. B) Answer the following questions (Any two)

(a) Do as directed: (Each of 02 marks)

1. Find the equation of line through the points $(3,1,2)$ and $(1,2,1)$.
2. Find the area of triangle whose vertices are the points $(1,2,3),(-2,1,-4)(3,4,-2)$.
(b) Find the equation of cone with vertex $(5,4,3)$ and $y^{2}=4 x, z=0$. as base.
(c) Find the ratio in which the sphere $x^{2}+y^{2}+z^{2}=350$ divides the line joining the points $(3,-1,2)$ and $(9,-3,6)$.

Q.4. A) Answer the following questions.

(a) Multiple choice questions (Show all calculations) (Each of 2 Marks)
1.Point of contact of the spheres $x^{2}+y^{2}+z^{2}+2 x-4 y-4 z-7=0$, $x^{2}+y^{2}+z^{2}+2 x-4 y-16 z+65=0$
(a) $(1,2,6)$
(b) $(1,2,-6)$
(c) $(1,-2,6)$
(d) $(-1,2,6)$
2. Nature of intersection of planes $2 x-5 y+z=3, x+y+4 z=5$ and $x+3 y+6 z=1$
(a) intersects in line
(b) intersect in point
(c) intersect in prism
(d) none
(b) Find the equation of sphere through the points ($0,0,0$), ($0,1,-1$), $(-1,2,0)$ and $(1,2,3)$.

Q.4. B) Answer the following questions (Any two)

(a) Multiple choice questions. (Each of 01 marks)

1. The angle between planes $2 x-3 y+2 z=0,2 x+2 y+z=5$ is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$
2. The intercepts of the plane $4 x+2 y+3 z=12$ on the co-ordinate axes are given by:
(a) $2,-3,4$
(b) $3,6,4$
(c) $6,-4,3$
(d) $3,-3,1.5$
3. Guiding curve of enveloping cylinder is
(a) circle
(b) sphere
(c) any curve
(d) ellipse
(b) Find the equation of the enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}=25$, whose generators are parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$.
(c) Find the equation of the line which passes through the point $(2,-1,1)$ and intersects the lines $2 x+y-4=0=y+2 z ; \quad x+3 z=4=2,2 x+5 z=8$.
