Seat No:_____

PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE B.Sc. Winter2017-18 Examination

Enrollment No:_____

Semester: 1	D.Sc. Winter 2017-16 Examination	Date: 28-12-2017	
Subject Code: 11106101 Subject Name: Mathematics-I		Time: 10:30AM to 01:00 Total Marks: 60	PM
Instructions:			
1. All questions are compulsory.			
 Figures to the right indicate full r Make suitable assumptions where 			
4. Start new question on new page.	ever necessary.		
Q.1. A) Answer the following que	estions (Fach of 04 marks)		(08)
	sary condition for extreme values.		(00)
	mean value theorem for $f(x) = \log x$, x	$x \in [1, e]$	
Q.1. B) Answer the following que			
(a) 1. Find first order deriv	variative of $y = \left(x + \frac{1}{x}\right)\left(x - \frac{1}{x} + 1\right)$		(04)
2. State the sandwich th	heorem. Using theorem find $\lim_{x\to 0} f(x)$ wh	ere	
$1 x^2 < C(x) < 1$	x^2		
$1 - \frac{x^2}{2} \le f(x) \le 1 + \frac{1}{2}$	$\overline{2}$		
(b) Find $\frac{d^n y}{dx^n}$ for $y = e^{ax}$	$x \cos^2 hx$		(04)
(b) Find $\frac{dx^n}{dx^n}$ for $y = e$	$\cos bx$		(04)
(c) If $u = \log(\tan x + \tan x)$	an $y + \tan z$) then prove that		
$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y}$	$+\sin 2z \frac{\partial u}{\partial z} = 2$		(04)
Q.2. A) Answer the following que	estions.		
(a) 1 If $v \log(\cos x) = 1$	$x\log(\sin y)$ then find $\frac{dy}{dx}$.		(04)
$(a) 1.11 \text{ y} \log(\cos x) = 1$	dx		(04)
2. If $u = 2xy, v = x^2$	$-y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ the	en evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$.	
d(u)	<i>vu'</i> – <i>uv'</i>		
(b) Prove that $\frac{d}{dx}\left(\frac{u}{v}\right) =$	$\overline{v^2}$.		(04)
Q.2. B) Answer the following que	estions (Any two)		
(a) 1. Define one-one funct			(03)
 Define Increasing fu Define function. 	inction.		
	owing function is invertible or not for $y =$	$x = 1 + x^2, x \in [-2,0]$. If yes	(03)
then find domain of inverse			
(c) $f(x) = 3 x + 4 x - x $	1, $x \in R$ has minimum value 3 at $x = 1$		(03)
Q.3. A) Answer the following questions:			(08)
(a) State and prove Rolle'			
	of $f(x) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$ at c		
(b) Discuss the continuity	of $f(x) = \{x^2 + y^2\}$ at c	origin.	
	[0, (x, y) = (0, 0)]		

Q.3. B) Answer the following questions (Any two)

(a) 1. Find the value of $(f \circ g)'$ at the given value of x for

$$f(x) = 1 - \frac{1}{u}, u = g(x) = \frac{1}{1 - x}, x = -1$$

2. Find $\frac{dy}{dx}$ for $x = 2\cos t - \cos 2t$, $y = 2\sin t - \sin 2t$.
(b) Trace the curve $r = 1 + \cos\theta$ (04)

(b) Trace the curve $r = 1 + \cos\theta$

(c) Using Taylor's formula expand
$$\tan^{-1}\left(\frac{y}{x}\right)$$
 at the point (1,1) upto second degree term. (04)

Q.4. A) Answer the following questions.

- (a) 1. Find the equations of tangent plane to the surface $2x^2 + y^2 + 2z = 3$ at the point (2,1,-3) (04)
 - 2. Find the asymptotes of the curve $y^2 = \frac{x(x-a)(x-2a)}{(x+3a)}$.
- (b) State and prove Euler's theorem on homogeneous functions. (04)

Q.4. B) Answer the following questions (Any two)

- (a) 1. Define Change of sign (03) 2. Define Even function.
 - 3. Define Limit for one variable.

(b) If
$$u = \frac{1}{x^2} + \frac{1}{y^2} + \frac{\log x - \log y}{x^2 + y^2}$$
 then prove that
 $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 6u$
(03)

(c) Use chain rule to find
$$\frac{dz}{dt}$$
. If $z = x^2 e^y$, $x = \sin t$, $y = t^3$. (03)

(04)