## PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech Mid Semester Exam

Semester: 6th

Subject Code: (203120359)

Subject Name: (Pump and Compressor)

Date: (01/02/2024)
Time: (1hr: 30min)

Total Marks: 40

Sr.

No.

Q.1 (A) Five One line Questions

Marks



5

| 3. The correct sequence of the given four cycles on T-s plane in Figure (1), (2), (3) (4) is              |    |
|-----------------------------------------------------------------------------------------------------------|----|
| (a) Rankine, Otto, Carnot and Diesel                                                                      |    |
| (b) Rankine, Otto, Diesel and Carnot                                                                      |    |
| (c) Otto, Rankine, Diesel and Carnot                                                                      |    |
| (d) Otto, Rankine, Carnot and Diesel                                                                      |    |
| (3) T                                                                                                     |    |
| 4. The bore and stroke of the cylinder of a 6-cylinder engine working on an otto-cycle                    |    |
| are 17 cm and 30 cm respectively, total clearance volume is 9225 cm3, then what is                        |    |
| the compression ratio                                                                                     |    |
| 5. In SI engines for higher thermal efficiency                                                            |    |
| a) compression ratio should be high within the available limits                                           |    |
| b) Heat liberation during combustion should be maximum                                                    |    |
| c) Surface to volume ratio should be high                                                                 |    |
| d) long flame travel distance                                                                             |    |
| (B) Five Fill in the blanks                                                                               |    |
| 1. An Otto cycle has a compression ratio of 8. If 250 kJ of work is extracted from the                    | 05 |
| cycle, the heat rejected by the cycle is                                                                  |    |
| 2. Consider the following statements for the air- standard efficiency of Diesel cycle:                    |    |
| 1) For the same compression ratio, the efficiency decreases with increasing cutoff ratios.                |    |
| 2) For the same compression ratio and same heat input, Diesel cycle is more efficient                     |    |
| than Otto cycle.                                                                                          |    |
| 3) For constant maximum pressure and constant leaves                                                      |    |
| efficient than otto cycle                                                                                 |    |
|                                                                                                           |    |
|                                                                                                           |    |
| Which of the above statements are correct?  a) 1, 2 and 3 b) 1 and 2 only c) 1 and 3 only d) 2 and 3 only |    |

|     | 3. What do mean by Isentropic efficiency of Turbine in Brayton cycle                                    |    |
|-----|---------------------------------------------------------------------------------------------------------|----|
|     | 4. An ideal Otto-cycle works between minimum and maximum temperatures of 300 K                          |    |
|     | and 1800 K. What is the compression ratio of the cycle for maximum work output                          |    |
|     | when y = 1.5 for this ideal gas                                                                         |    |
|     | 5. An IC engine has a bore and stroke each equal to 2 units. The total area to calculate                |    |
|     | heat loss from the engine can be taken as                                                               |    |
| Q.2 | Attempt any four (Short Questions)                                                                      | 12 |
|     | (1) Write down the comparison between Simple Brayton cycle (S.B.C) and Brayton                          |    |
|     | cycle with intercool (B. C. I) with help of T-S and PV diagram, also comment on                         |    |
|     | Efficiency                                                                                              |    |
|     | (2) An one-litre cubic capacity, four-stroke, four-cylinder SI engine has brake thermal                 |    |
|     | efficiency of 30% and indicated power is 40 kW at full load. At half load, it has a                     |    |
|     | mechanical efficiency of 65%. Assuming constant mechanical losses, calculate: (i) brake                 |    |
|     | power (ii) frictional power (iii) mechanical efficiency at full load (iv) indicated thermal             |    |
|     | efficiency. If the volume decreases by eight-fold during the compression stroke, calculate              |    |
|     | the clearance volume                                                                                    |    |
|     | (3) A spark-ignition engine working on ideal Otto cycle has the compression ratio 6. The                |    |
|     | initial pressure and temperature of air are 1 bar and 37 °C. The maximum pressure in the                |    |
|     | cycle is 30 bar. For unit mass flow, calculate (i) p, V and T at various salient points of              |    |
|     | the cycle and (ii) the ratio of heat supplied to the heat rejected. Assume $\gamma = 1.4$ and $R = 1.4$ |    |
|     | 8.314 kJ/kmol K                                                                                         |    |
|     | (4) What is effect of pressure ratio on efficiency of Brayton cycle, optimum pressure                   |    |
|     | ratio and W <sub>max</sub>                                                                              |    |
|     | (5) A gas turbine plant operates on the Brayton cycle between $T_{min} = 300 \text{ K}$ and $T_{max} =$ |    |
|     | 1073 K. Find the maximum work done per kg of air, and the corresponding cycle                           |    |
|     | efficiency. How does this efficiency compare with the Carnot cycle efficiency operating                 |    |
|     | between the same two temperatures                                                                       |    |
| Q.3 | Attempt any two questions                                                                               | 08 |
|     | (1) Drive the efficiency of dual cycle in terms of cut-off ratio                                        |    |
|     | (2) An air standard limited pressure cycle has a compression ratio of 15 and compression                |    |
|     | begins at 0.1 MPa, 104°F. The maximum pressure is limited to 6 MPa and the heat added                   |    |
|     | is 1.675 MJ/kg. Compute (a) the heat supplied at constant volume per kg of air, (b) the                 |    |
|     | heat supplied at constant pressure per kg of air, (c) the work done per kg of air, (d) the              |    |

|                                         | (f) the cut-off ratio, and (g) the m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c.p. of the cycle.                                                                                                                       |                                                            |                                                                      |    |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----|--|
|                                         | (3) An oil engine working on the dual combustion cycle has a compression ratio 14 and the explosion ratio obtained from an indicator card is 1.4. If the cut-off occurs at 6 per cent of stroke, find the integer of stroke find the integer |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         | the explosion ratio obtained from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an indicator card                                                                                                                        | is 1.4. If th                                              | e cut-off occurs at 6 per                                            |    |  |
| 0.4                                     | cent of stroke, find the ideal efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ency. Take γ for air                                                                                                                     | = 1.4                                                      |                                                                      |    |  |
| Q.4                                     | (A) In a simple Brayton cycle, the pressure ratio is 8 and temperatures at the entrance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         | compressor and turbine are 300K and 1400K, respectively. Both compressor and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         | tarblic have isentropic efficiencies equal to 0.8. For the gas, assume a constant value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         | Cp, (specific heat at constant press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ure) equal to 1kJ/kg                                                                                                                     | K and ratio                                                | of specific heat and the                                             |    |  |
|                                         | Neglect changes in kinetic and pote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ential energies                                                                                                                          | STE WHAT TALL                                              | o of specific near as 1.4.                                           |    |  |
|                                         | a) Power required by the compresso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or KJ/Kg of gas flow                                                                                                                     | Wrote :-                                                   |                                                                      | -  |  |
|                                         | <ul><li>a) Power required by the compressor KJ/Kg of gas flow rate is</li><li>b) The thermal efficiency of cycle in percentage (%)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         | c) work ratio in percentage (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m percentage (%)                                                                                                                         |                                                            |                                                                      |    |  |
|                                         | d) Back work Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                                            |                                                                      |    |  |
|                                         | e) Specific air consumption (Kg/K-W-hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |                                                            |                                                                      |    |  |
| -                                       | (B) When you compare Simular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W-hr)                                                                                                                                    |                                                            |                                                                      |    |  |
|                                         | (B) When you compare Simple Bray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yton cycle Vs Rege                                                                                                                       | eneration, I                                               | ntercooling and Reheat                                               | 05 |  |
|                                         | (B) When you compare Simple Bray<br>Brayton cycle. What is the effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yton cycle Vs Rege<br>Regeneration, Inter                                                                                                | eneration, In                                              | ntercooling and Reheat                                               | 05 |  |
|                                         | (B) When you compare Simple Bray<br>Brayton cycle. What is the effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yton cycle Vs Rege<br>Regeneration, Inter                                                                                                | eneration, In                                              | ntercooling and Reheat d Reheat on efficiency,                       | 05 |  |
|                                         | (B) When you compare Simple Bray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray<br>Brayton cycle. What is the effect of<br>net work and work ratio (It will incre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yton cycle Vs Rege<br>Regeneration, Inter                                                                                                | eneration, Incoming and                                    | ntercooling and Reheat d Reheat on efficiency, Work Ratio            | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will incre Brayton cycle with Regeneration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will incre Brayton cycle with Regeneration Intercooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling Regeneration + Reheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | yton cycle Vs Reger<br>Regeneration, Interease or decrease).                                                                             | cooling and                                                | d Reheat on efficiency,                                              | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling Regeneration + Reheat Intercooling + Reheat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yton cycle Vs Reger<br>Regeneration, Interests or decrease).  Efficiency (η)                                                             | W <sub>net</sub> .                                         | Work Ratio                                                           | 05 |  |
|                                         | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling Regeneration + Reheat Intercooling + Reheat  B) A gas turbine unit receives air at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yton cycle Vs Reger Regeneration, Intercase or decrease).  Efficiency (η)  OR  1 bar and 300 K ar                                        | W <sub>net</sub> .                                         | Work Ratio  Ses it adiabatically to                                  |    |  |
| (0)                                     | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling Regeneration + Reheat Intercooling + Reheat B) A gas turbine unit receives air at .2 bar. The compressor efficiency is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yton cycle Vs Reger Regeneration, Interest ease or decrease).  Efficiency (η)  OR  1 bar and 300 K ar  88%. The fuel has                 | W <sub>net</sub> .  Word compress                          | Work Ratio  West adiabatically to                                    | 05 |  |
| (0)                                     | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling Regeneration + Reheat Intercooling + Reheat B) A gas turbine unit receives air at .2 bar. The compressor efficiency is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yton cycle Vs Reger Regeneration, Interest ease or decrease).  Efficiency (η)  OR  1 bar and 300 K ar  88%. The fuel has                 | W <sub>net</sub> .  Word compress                          | Work Ratio  West adiabatically to                                    |    |  |
| (A) | (B) When you compare Simple Bray Brayton cycle. What is the effect of net work and work ratio (It will increase Brayton cycle with Regeneration Intercooling Reheat Regeneration + Intercooling Regeneration + Reheat Intercooling + Reheat  B) A gas turbine unit receives air at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yton cycle Vs Reger Regeneration, Intercase or decrease).  Efficiency (η)  OR  1 bar and 300 K ar  88%. The fuel has g of air. The turbi | W <sub>net</sub> .  Would compress a heating wine internal | Work Ratio  Work Ratio  ses it adiabatically to valve of 44186 kJ/kg |    |  |