Enrolment Number:	

05

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech MID Semester Exam 6th SEMESTER

SUBJECT: Chemical Reaction Engineering -II (203103353)					BRANCH: Chemical Engineerin			
[Date: 2	29.1.2024]	[Tim	e: 02.30 P.M. to	[Total Marks: 40]				
Q.1	(A) Multiple Cho 1) If M is the the effluen distribution	total amou	int of tracer inject	ed and v is the vol ship between cum	umetric flow rate of ulative and exit age	05		
	a) E= C /((M.v)	b) E= C /(M/v)	c) E= M /(c/v)	d) $E = MC/(v)$			
	0 and $t = \infty$	is	rve of exit age di		d between time, t =			
	3) If the entire	e volume o	of PFR is 10 m3		s 2 m ³ , then active			
	a) ' b) ' c) '	To study th To study th Fo study th	te reaction mechan te extent of Ideal	low in the vessel leal flow in the ves				
	b) I c) I	lowing representations of Reduction of Roasting of	synthesis coal of iron ore	ous catalytic reacti	on?			

(B) Define: Early mixing and Late mixing, Mean Residence time, Tracer.

Q.2 Attempt any four (Short Questions):

12

- (1) Explain Residence time Distribution function for Non-Ideal system.
- (2) Provide ways in which the mean residence time can be calculated.
- (3) List out the examples of Heterogeneous reaction-based catalytic and Non-Catalytic chemical reaction.
- (4) Write down about Contacting Patterns (Schemes) For Two-Phase system.
- (5) Explain in Brief Micro fluid and Macro fluid based on State of Aggregation.

Q.3 Attempt any two:

08

- (1) What are different non ideal patterns? Define E, F and C curves and derive relation between them.
- (2) Short note: RTD Measurement with Pulse input
- (3) Explain Limiting Step (Rate controlling) for heterogeneous reaction.
- Q.4 (A) Short note on Dispersion Model for non-Ideal system.

05

(B) Gaseous reactant A diffuses through a gas film and reacts on the surface of a solid according to a reversible first-order rate,

mol/m².sec

05

05

$$-r_A = k (C_{As} - C_{Ae})$$

Where CAe, is the concentration of A in equilibrium with the solid surface. Develop an expression for the rate of reaction of A accounting for both the mass transfer and reaction steps.

OR

(B) A slug of dye is placed in the feed stream to a continuous stirred reaction vessel operating at steady state. The dye concentration in the effluent or outlet stream was monitored as a function of time to generate the data in the table below. Time is measured relative to that at which the dye was injected. Given data:

Time (sec)	0	120	360	360	480	600	720	840	960	1080
Tracer concentration (g/m3)	0	6.5	12.5	12.5	10	5	2.5	1	0	0

Plot the 'C' & 'E' curves and determine the mean residence time of the fluid by Numerical method.