Enrollment No:	

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech Mid Semester Exam

Semester: 4th
Subject Code: 303103255

Date: (31/01/2024)

Subject Name: Numerical Methods in Chemical Engineering

Time: (1hr: 30min) Total Marks: 40

Sr. No. Marks

Q.1 (A) Five One line Questions

05

- 1. Write the formula of Simpson's 3/8 rule.
- 2. Name the Interpolation Methods used to solve equally spaced data.
- 3. Write the One-point Gaussian Quadrature formula.
- 4. Write the Three-point Gaussian Quadrature formula
- 5. Name the Interpolation Methods used to solve unequally spaced data.
- (B) Five Fill in the blanks

05

- 1. To apply simpson's 1/3 rule, the number of subintervals should be a multiple of
- 2. Second order Runga kutta method is also known as_____
- 3. For the value of n = 3, Newton-Cotes Quadrature formula gives _____rule.
- 4. $(1+\Delta)(1-\nabla)=$ _____
- 5. To apply Trapezoidal rule, the number of subintervals should be a multiple of _____
- Q.2 Attempt any four(Short Questions)

12

- (1) Evaluate $\int_0^3 \frac{1}{1+x} dx$, with n=6 using Simpson's 3/8 rule.
- (2) Given the data below, find the isothermal work done on the gas if it is compressed from

 $v_1 = 22L$ to $v_2 = 2L$ using Trapezoidal rule. Use $W = -\int_{v_1}^{v_2} p \ dv$.

v_1, L	2	7	12	17	22
P, atm	12.20	3.49	2.049	1.44	1.11

- (3) Use the second order R-K method to find an approximate value of y given that $\frac{dy}{dx}$ =
- 3x + y and y(1) = 1.3 at x = 1.1 with step size of 0.1.

- (4) Evaluate $\int_{-1}^{1} \frac{1}{1+x^2} dx$ by One-point, Two-point and Three-point formulae.
- (5) Evaluate $\int_0^6 \frac{1}{1+x^2} dx$, with n=6 using Simpson's 1/3 rule
- Q.3 Attempt any two questions

08

05

05

(1) Prove the following

$$(i)\Delta \nabla = \Delta - \nabla$$
. $(ii)\nabla = 1 - E^{-1}$

- (2) Find the approximate value of y(5), by Lagrange's interpolation formula using the data (-1, -2), (1,0), (4,63) and (7,342).
- (3) Determine the value of y at x = 0.1 correct up to four decimal places by taking h = 0.1. Given that y(0) = 1 and $\frac{dy}{dx} = x^2 + y$ using Modified Euler's Rule.
- Q.4 (A) Using Newton's Backward interpolation formula, find the value of f(175).

x	140	150	160	170	180
f(x)	3685	4845	6302	8076	10225

(B) Using Newton's forward interpolation formula, find the value of f(1.6).

 x
 1
 1.4
 1.8
 2.2

 f(x)
 3.49
 4.82
 5.96
 6.5

OR

(B) Using 4th order Runge-Kutta method, solve the equation Using R-K method of fourth order, solve $\frac{dy}{dx} = x + y$, y(0) = 1 at x = 0.2 and step size of 0.1.

05