Enrollment No:	

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech Mid Semester Exam

Semester: 4th

Subject Code: 203103253

Subject Name: Mass Transfer-I

Date: 30/01/2024

Time: 10:30 AM T0 12:00 PM

Total Marks: 40

Subject	Total Marks: 40	
Sr.		Marks
No.		
Q.1	(A) 1. Define Overall Mass Transfer Resistance.	05
	2. Direction of Mass transfer is from Higher Concentration	
	to lower Concentration. True/False	
	3. Write down formula of mass flux with respect to	
	observer moving with mass average velocity.	
	4. Define Eddy diffusion.	
	5. What is Interphase Mass transfer?	
	(B) Describe Surface renewal Theory in detail.	05
Q.2	Attempt any four Questions.	12
	(1) Write down equation of Mass & Molar fluxes at different conditions.	1.2
	(2) Derive Expression for diffusion of A in Non diffusing B for the gaseous phase.	
	(3) Explain in detail Fick's law of diffusion along with neat sketch.	
	(4) Compare Different dimensionless groups associated with Mass transfer	
	(5) Explain the Following terms	
	(i)Mass Flux (ii) Molar Flux (iii) Molar Concentration	
T I	Attempt any two questions	08
	(1) Explain in detail: Separation processes in Mass Transfer along with modes of	
	separation & Separating agent.	
	(2) Correlate Fick's law of diffusion with other fundamental laws of Chemical	
	Engineering.	
	(3) Explain the following terms	
	(i) Local Mass Transfer Coefficient	
	(ii) Overall Mass Transfer Coefficient	
	(iii) Overall Mass Transfer Resistance	
	(iv) Local Mass Transfer Resistance	
Q.4	(A) In an oxygen-nitrogen gas mixture at 101.3 kPa and 298 K, the concentrations of	05
	oxygen at two planes 2 mm apart are 20 and 10% by volume respectively. Calculate the	US
	flux of diffusion of oxygen for the cases where : (i) nitrogen is non-diffusing (ii) there is	
	equimolar counter diffusion of the two gases. Diffusivity of O_2 in N_2 is 1.81×10^{-5} m ² /s.	
	(B) For a steady state condition if A is diffusing in B & B is also diffusing in A prove that	05
	rate of diffusion for both the cases will be similar.	US
	OR	
	(B) "Rate of renewal of liquid constituents on a gas bubble is similar for each & every	05
	constituents.". Justify the statement.	บอ