Seat No: _____

Enrollment No: _____ PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Winter 2019 - 20 Examination

Sul	nester: 5 oject Code: 03101330 oject Name: GAS DYNAMICS	Date: 03/12/2019 Time: 10:30 am to 01:00pr Total Marks: 60	n
	tructions:		
	All questions are compulsory.		
	Figures to the right indicate full marks.		
	Make suitable assumptions wherever necessary.		
	Start new question on new page.		
	Objective Type Questions - (Fill in the blanks, one word answer, MCQ	-not more than Five in (15	5)
	case of MCQ) (All are compulsory) (Each of one mark)		
	1. When mach number is less than 1 flow is		
	a) Subsonic flow		
	b) Transonic flow		
	c) Supersonic flow		
	d) None of the mentioned		
	2. For compressible flow mach number must be 0.3a) less than		
	b) equal to		
	c) greater than		
	d) none		
	3. Nozzles are used to control the		
	a) temperature		
	b) rate of flow		
	c) mass flow rate		
	d) none of the mentioned		
	4. Nozzle used in rocket engine is		
	a) convergent nozzle		
	b) divergent nozzle		
	c) convergent – Divergent nozzle		
	d) none of the mentioned		
	5. In a shock tube:		
	a) p and Mach are continuous across contact discontinuity		
	b)entropy s is constant through expansion and contact discontinuity		
	c) p and U are continuous across contact discontinuity		
	d)Mach of the flow behind shock cannot be $M>1$		
	d)Mach of the flow behind shoek earliet be M21		
	6. When mach number is in between 1.2 - 5, flow is in		
	7. what is under-expanded nozzle?		
	8. The integral form of continuity equation is		
	9. When Mach number > 0.3, flow is		
	10. The actual temperature of the fluid in a particular state is known as		
	11. A plane travels at a speed of 2400 KM/h in an atmosphere of 5° C, find		
	angle		
	12. Find the sonic velocity in oxygen when it is at 110° C, g=1.4		
	13. A steady one-dimensional flow in a constant area duct with friction in t		
	Work and heat transfer is known as		
	14. The mass flow rate is maximum at the critical state and is constant after	rwards then the flow is	
	said to be	wards, men me 110 w 15	
	15.compressibility equation at constant temperature(isothermal compressib	oility)	

Q.2	Answer the following questions. (Attempt any three)A) Differentiate between Fanno flow and Rayleigh flow.	(15)
	B) What is chocked flow? State the necessary critical conditions for this flow to occur in a nozzle associated with pressure, temperature, velocity and density.	
	 B) i)what is stagnation condition? And also write stagnation condition of pressure, temperature and density. ii) Derive A/A* ratio D) Euclain attached, detached sheels 	
	D) Explain attached – detached shock.	
Q.3	A) Compulsory i)derive area velocity and mach number relation with all cases	(07)
	ii)derive rankine- hugonoit equationB)i) What is difference between oblique and normal shock?	(08)
	ii) What is difference between convex corner and concave corner?	
	iii) What is compressible flow and also what is compressibility?	
OR		
	B) What is shock tube and also explain shock interaction and shock reflection with neat diagram.	(08)
Q.4	A)	(07)
c	Derive normal shock relation along with prandtle- meyer relation.	
	OR	
	A) Desire al l'ence al calerier al caractérier DEL ATION	(07)
	Derive oblique shock relation along with θ - β -M equation RELATION B) Compulsory	(08)
	Air flows isentropically through a C.D. The inlet conditions are pressure 700	(00)
	KN/m2, temperature 320oc, velocity 50 m/s. The exit pressure is 105KN/m2 and the exist Area is 6.25 cm2. Calculate	
	i) Mach number, temperature and velocity at exit	
	ii) Pressure, temperature and velocity at throat	
	iii) Mass flow rate	
	iv) Throat area	