\qquad
\qquad
PARUL UNIVERSITY

FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Winter 2022-23 Examination

Date: 28/01/2023
Semester: 1
Subject Code: 303191101
Subject Name: Mathematics-I

Time: 02:00 pm to 04:30 pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 Objective Type Questions.

1. $\frac{\partial f}{\partial x}$ for $f=x^{y}$ is
(a) $y x^{y-1}$
(b) $x y^{x-1}$
(c) x^{y-1}
(d) None of the above
2. An eigenvalue of 2×2 matrix A is 3 , the eigenvalue of $A^{2}+3 I$ is \qquad
(a) 9
(b) 6
(c) 3
(d) 12
3. Which of the following is reduced row echelon form?
(a) $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
4. The value of $a=$ \qquad , so that the system
$(a-1) x+2 y=0$ $3 x+(a-2) y=0 \quad$ has non trivial solution.
(a) 4
(b) 1
(c) 0
(d) -4
5. The degree of homogeneous function $f(x, y)=\frac{x^{2}+y^{2}}{x+y}$
(a) 0
(b) 1
(c) 2
(d) 3
6. The degree and order of the differential equation $\frac{d^{2} y}{d x^{2}}-3\left(\frac{d y}{d x}\right)^{2}+2 y=3$ is \quad and
(a) 2,3
(b) 3,2
(c) 1,2
(d) 2,1
7. Which of the following series is convergent?
(a) $\sum_{n=1}^{\infty} \frac{1}{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(d) $\sum_{n=0}^{\infty} \cos (n \pi)$
8. $\Gamma\left(\frac{1}{2}\right)=$ \qquad -.
9. Write the relation between Gamma and Beta function.
10. Every square matrix satisfies its own characteristic equation. (True/False)
11. If $f(x)=x \sin x$ in $(-\pi, \pi)$ then the value of $b_{n}=$ \qquad
12. Find the normal line to the sphere $x^{2}+y^{2}+z^{2}=3$ at the point $(1,1,1)$.
13. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right]$ then eigenvalues of matrix A are \qquad and \qquad .
14. $\lim _{(x, y) \rightarrow(1,1)} \frac{x-y}{\sqrt{x}-\sqrt{y}}=$ \qquad
15. Express the quadratic form $Q(x, y)=x^{2}+3 y^{2}+2 x y$ in the matrix form.

Q. 2 Answer the following questions. (Attempt any three)

A) Solve the following system of equations by using Gauss elimination method
$x+y+2 z=9$
$2 x+4 y-3 z=1$
$3 x+6 y-5 z=0$
B) Discuss the continuity of
$f(x, y)=\left\{\begin{array}{cc}\frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array} \quad\right.$ at origin.
C) Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right]$.
D) Find the value of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at point (1,2) if $f(x, y)=x^{2}+2 x y+3 y^{2}-1$
Q. 3 A) (i) Solve $\frac{d y}{d x}+y \tan x=\sin 2 x$
(ii) Evaluate $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$
B) Find the non-singular matrix P that diagonalizes matrix A and determine $P^{-1} A P$ where

$$
A=\left[\begin{array}{cc}
5 & 7 \tag{08}\\
-2 & -4
\end{array}\right] .
$$

OR

B) Find the Fourier Series of $f(x)=x^{2}$ in the interval $(-\pi, \pi)$.
Q. 4 A) If $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ prove that
(i) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{\sin 2 u}{2}$
(ii) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=-2 \sin ^{3} u \cos u$

OR
A) (i) Check whether the differential equation is exact or not and hence, solve

$$
\begin{equation*}
2 x y d x+\left(1+x^{2}\right) d y=0 \tag{04}
\end{equation*}
$$

(ii) Test the convergence of $\sum_{n=1}^{\infty} \frac{2 n^{2}+2 n}{5+n^{5}}$
B) Discuss the maxima and minima of the function

$$
\begin{equation*}
f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x \tag{08}
\end{equation*}
$$

