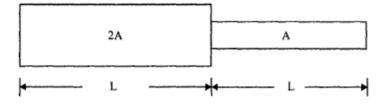
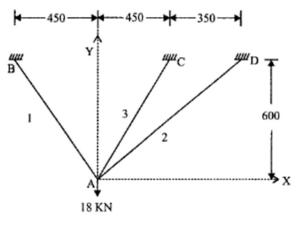

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B. Tech. Winter 2022 - 23 Examination


Semester: 7 Date: 12/10/2022							
Subject Code: 03109430					Time: 02:00 pm to 04:30 pm		
Subject Name: Finite Element Methods						otal Marks: 60	
 Instructions: 1. All questions are compulsory. 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start new question on new page. 							
Q.1		Objective Type Questions - (Each of one mark) All c	lues	tions are compu	ılsory		(15)
	1.	Write down the stiffness matrix equation for two dimensional CST elements.					
	2.	Penalty approach leads to displacements at supports.					
	3.	State the principle of virtual energy:					
	4.	If the functions of same order are used to represent displacement as well as geometry, then the element is called an ?					
	5.	Crankshaft vibration problem falls under which category of dynamic analysis problems?					
	6.	Name any two FEA softwares.					
	7.	When fewer nodes are used to define the geometry than are used to define the displacement, the element is called element.					
	8.						
	9.	How do you calculate the size of the global stiffness matrix?					
	10.						
	11.	To solve FEM problems, it subdivides a large problem	n int	o smaller, simp	ler part	s that are called:	
		a finite elements b infinite elements		dynamics elements	d	static elements	
	12.	Finite element method formulation of problem results	in a	system of :			
		a logical equations b algebraic equations	c	Arithmetic equations	d	flow equations	
	13.						
		a flexibility matrix b stiffness matrix	c	conductance matrix	d	mixed matrix	
	14.	Elements connecting lower order elements and higher order elements in a mesh is called					
		a transition elements b sub-parametric elements	c	iso-parametric elements	e d	super- parametric elements	
	15.	Primary variable in FEM structural analysis is					
		a Displacement b Strain	c	Stress	d	Force	
Q.2		Answer the following questions. (Attempt any three	e)				(15)
	A)	State different types of errors involved in solution of FEA.					
	B)	Differentiate between Finite Difference Method (FDM) and Finite Element Method (FEM)					
	C)	State basic theorems of Iso-parametric concept.					
	D)	Explain Aspect Ratio in terms of finite elements.					

- Q.3 A) Explain steps involved in Finite Element Method.
 - B) Determine the nodal displacements and element stresses by finite element formulation for the following axial bar. Use P = 300 k N; $A_1 = 0.5 \text{ m}^2$; $A_2 = 1 \text{ m}^2$; E = 200 GPa (08)


B) Find the natural frequencies of longitudinal vibrations of the unconstrained stepped shaft (08) of areas A and 2A and of equal lengths (L), as shown below.

Q.4 A) Classify finite elements according to Simplex, Complex and Multiplex categories. (07)

OR

A) For the three bar truss shown in figure below, determine the displacements of node 'A' and the stress in element 3. (07)

 $A = 250 \text{ mm}^2$; E = 200 GPa

B) A metallic fin, with thermal conductivity 360 W/m °K, 0.1 cm thick and 10 cm long extends from a plane wall whose temperature is 235 °C. Determine the temperature distribution along the fin if heat is transferred to ambient air at 20 °C with heat transfer coefficient of 9 W / m² °K. Take width of the fin as 1 m.

Page 2 of 2

(07)