Seat No: ____

Enrollment No: _ PARUL UNIVERSITY CACULTY OF ENGINEERING & TECHNOLOGY

FACULTY OF ENGINEERING & TECHNOLOGY		
B.Tech. Summer 2022 - 23 Examination Semester: 4 Subject Code: 203104285 Subject Name: Hydraulic Engineering	Date: 24/03/2023 Time: 02:00 pm to 04:30 Total Marks: 60	рт
Instructions:1. All questions are compulsory.2. Figures to the right indicate full marks.3. Make suitable assumptions wherever necessary.4. Start new question on new page.		
 Q.1 Objective Type Questions - (Fill in the blanks, one word answer, MCQ-of MCQ) (All are compulsory) (Each of one mark) 1. What is Reynolds stress? a) Stress due to velocity fluctuations b) Tangential component of pressure c) Stress due to pressure fluctuations d) Normal component of viscosity 2. In turbulent flow, the a) Fluid particles move in an orderly manner b) Momentum transfer is on molecular scale only c) Shear stress is caused more effectively by cohesion than momentum d) Shear stresses are generally larger than in a similar laminar flow 3. Dimension of Dynamic viscosity		(15)
 c) Within a cylindrical depth d) In a pump 6. The flow in which the parameters do not change with respect to time 7. In unsteady flow, the streamline also changes from instant to instant. a) true b) false 8. How can we determine whether the flow is laminar or turbulent? 9. The swirl caused due to eddies are called as		
 10. With the boundary layer separation, displacement thickness		
Q.2 Answer the following questions. (Attempt any three)A) Differentiate between hydrodynamically rough and smooth boundary.B) Explain shear stress in turbulent flow.C) What do you understand by Boundary layer theory.		(15)

C) What do you understand by Boundary layer theory.D) What do you understand by lift and drag.

- Q.3 A) Explain Source and Sink flow with appropriate sketches.
 - B) Find the displacement thickness, the momentum thickness and energy thickness for the velocity distribution in the boundary layer given by

$$\frac{u}{U} = \frac{y}{\delta}$$

Where u=U at $y=\delta$.

OR

OR

- B) A rectangular channel carries water at the rate of 400 litres/s when bed slope is 1 in 2000. Find (08) the most economical dimensions of the channel if C = 50.
- **Q.4** A) Derive expression for depth of hydraulic jump.

(07)

- A) Derive expression for conditions for most economical trapezoidal section. (07)
 - B) The efficiency η of a fan depends on density ρ , dynamic viscosity μ of the fluid, angular velocity (08) ω , diameter D of the rotor and the discharge Q. Express η in terms of dimensionless parameters.

(07) (08)