PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc. Summer 2022-23 Examination

Semester: 4 Subject Code: 11206256 Subject Name: Computational Fluid Dynamics

Instructions:

Q.2.

Q.2.

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1. A) Answer the following questions:

- (a) Define Computational Fluid Dynamics (CFD). Also, state the objectives and advantages of CFD.
- (b) Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in the following figure-1. Iterate until the maximum difference between two successive values at any point is less than 0.001 by Gauss-Seidel method.

Q.1. B) Answer the following questions: (Any two)

 (b) Explain the Finite Volume Method steps for solving a Diffusion Problem stated as ^d/_{dx} (Γ^{dφ}/_{dx}) + s = 0. Wh the source term, φ is the unknown function to be dete (c) Define consistency, stability, convergence, and the Scheme. A) Answer the following questions. (a) 1. State any two advantages of the Finite Difference M 2. Find the truncation error for first order derivative w backward finite difference scheme on u(x, t). (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Form (c) Derive equation of continuity for a fluid element. 	: $t u_{tt} + 3 u_{xt} + 2 u_{xx} + 3u_x = 0$, where $t \in R$. (In v Conditions in CFD.	04)
 Diffusion Problem stated as d/dx (Γ d/dx) + s = 0. Wh the source term, φ is the unknown function to be dete (c) Define consistency, stability, convergence, and the Scheme. A) Answer the following questions. (a) 1. State any two advantages of the Finite Difference N 2. Find the truncation error for first order derivative w backward finite difference scheme on u(x, t). (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mu below: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 	for solving a 1- Dimensional steady state (04)
 the source term, φ is the unknown function to be dete (c) Define consistency, stability, convergence, and truscheme. A) Answer the following questions. (a) 1. State any two advantages of the Finite Difference M 2. Find the truncation error for first order derivative we backward finite difference scheme on u(x, t). (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 	+ $s = 0$. Where, Γ is the diffusion co-efficient, s is	- ,
 (c) Define consistency, stability, convergence, and truscheme. A) Answer the following questions. (a) 1. State any two advantages of the Finite Difference M 2. Find the truncation error for first order derivative we backward finite difference scheme on u(x, t). (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of (a) Continuous time varying results at discrete locati b) Discrete points of space and time (c) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Four (c) Derive equation of continuity for a fluid element. 	on to be determined.	
Scheme. A) Answer the following questions. (a) 1. State any two advantages of the Finite Difference M 2. Find the truncation error for first order derivative w backward finite difference scheme on $u(x, t)$. (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mu below: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear $u_t + a u_x = 0$ by discretizing in Forward time and For (c) Derive equation of continuity for a fluid element.	nce, and truncation error in a Finite Difference (04)
 Answer the following questions. (a) 1. State any two advantages of the Finite Difference M. 2. Find the truncation error for first order derivative w backward finite difference scheme on u(x, t). (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locatible b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 		
 (a) 1. State any two advantages of the Finite Difference M 2. Find the truncation error for first order derivative w backward finite difference scheme on u(x, t). (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locatible b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 		
backward finite difference scheme on $u(x, t)$. (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locatibility b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear $u_t + a u_x = 0$ by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element.	Difference Method over the Finite Volume Method? (derivative with respect to ' x ' applying	04)
 (b) State any two points of differences between Experime B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locatibe b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 	$\iota(x,t)$.	
 B) Answer the following questions (Any two) (a) Choose any one of the following options for each mubbelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 	en Experiments and Simulations in CFD.	04)
 (a) Choose any one of the following options for each mubelow: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 		
below: 1. What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear $u_t + a u_x = 0$ by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element.	for each multiple-choice questions given	03)
 What is the order of accuracy of the Mac-Corma a) Fourth-order b) Third-order c) First-order CFD provides results of a) Continuous time varying results at discrete locatie b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Formation (c) Derive equation of continuity for a fluid element. 		
 a) Fourth-order b) Third-order c) First-order 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Format (c) Derive equation of continuity for a fluid element. 	Mac-Cormack's technique?	
 2. CFD provides results of a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 	c) First-order d) Second-order	
 a) Continuous time varying results at discrete locati b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 		
 b) Discrete points of space and time c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 	iscrete locations	
 c) Continuous spatial results at discrete time points d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear ut + a ux = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 		
 d) Continuous in time and space 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 	time points	
 3. The region of interest for analysis in CFD is called a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 		
 a) Cell b) Domain c) Mesh d) Grid (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 	FD is called as	
 (b) Find the order of accuracy for the 1-Dimension linear u_t + a u_x = 0 by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element. 	d) Grid	
$u_t + a u_x = 0$ by discretizing in Forward time and Fo (c) Derive equation of continuity for a fluid element.	ension linear convection equation:	03)
(c) Derive equation of continuity for a fluid element.	time and Forward space in domain.	
	lement.	03)

Date: 27/03/2023 Time: 2:00pm to 4:30pm Total Marks: 60

(08)

Q.3. A) Answer the following questions:	(08)
(a) State the difference between FDM and FVM.	
(b) Explain briefly about any four applications of CFD.	
Q.3. B) Answer the following questions (Any two)	
(a)1. State Lax equivalence theorem.	(04)
2. State the number of initial and boundary conditions required for solving one	
dimensional heat equation and one-dimensional wave equation.	
(b) Explain Mac-Cormack technique in CFD for calculating density of a fluid flow.	(04)
(c) Define Errors and explain the types of errors in a Finite Difference Scheme.	(04)
Q.4. A) Answer the following questions.	
(a) 1. State any one name of the following:	(04)
i. A pre-processing software ii. A post processing software	
2. Which type of equation is generated by a control volume-based model?	
(b) Define flux and explain types of fluxes in a fluid flow problem.	(04)
Q.4. B) Answer the following questions (Any two)	
(a) Choose any one of the following options for each multiple-choice questions given below.	(03)
1. What are the two major types of boundary conditions?	
a) Wall and symmetry b) Inlet and outlet	
c) Dirichlet and Neumann d) Initial and physical	
2. The Lax-Wendroff technique is	
a) explicit, finite-difference method b) implicit, finite-difference method	
c) explicit, finite volume method d) implicit, finite volume method	
3. What does the mathematical model of a fluid flow contain?	
a) Partial differential equations	
b) Discretized partial differential equations	
c) Partial differential equations and boundary conditions	
d) Discretized partial differential equations and boundary conditions	
(b) Write a short note on Multi-dimensional Euler equation.	(03)
(c) Explain in detail the shock capturing method in CFD.	(03)