Semester: 4

Date: 22-03-2023
Subject Code: 11206252
Time: 2:00 PM to 4:30PM
Total Marks: 60
Subject Name: Finite Element Method

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q.1. A) Answer the following questions.

(a) Construct the weak form for a nonlinear equation $-\frac{d}{d x}\left(u \frac{d u}{d x}\right)+f=0$ for $0<x<1$

$$
\left(u \frac{d u}{d x}\right)_{x=0}=0, u(1)=\sqrt{2}
$$

(b) Write an Imposition of Boundary conditions.
Q.1. B) Answer the following questions (Any two)
(a) Draw a Flow chart of the computer program FEM2D
(c) Let u_{h} and u be the solutions of $a\left(u_{h}, X\right)=(f, X), \forall X \in V_{h}$ and $(u, v)=f(u, v) \forall v \in$ $H_{0}^{1}(\Omega)$, respectively. Then for $1 \leq s \leq r$, the error $e=\left(u-u_{h}\right)$ satisfies $\|e\| \leq C h^{s} \|$ $u \|_{s}$, and $\|\nabla e\| \leq C h^{s-1}\|u\|_{S}$
(d) Let V be an element in $H^{2}(I)$ which vanishes at $x=0$. Let $I_{h} v$ be its nodal interplant which is defined as $I_{h} v(x)=\sum_{i=1}^{N} v\left(x_{i}\right) \phi\left(x_{i}\right)$. Then the following estimates $\left\|\left(v-I_{h} v\right)^{\prime}\right\| \leq C_{1} h \|$ $v^{\prime \prime} \|$, and $\left\|v-I_{h} v\right\| \leq C_{2} h^{2}\left\|v^{\prime \prime}\right\|$
Q.2. A) Consider the differential equation $-\frac{d^{2} u}{d x^{2}}=\cos \pi x$ for $0<x<1$ subject to the boundary conditions $u(0)=0,\left(\frac{d u}{d x}\right)_{x=1}=0$. Determine a three parameter solution, with trigonometric functions using the Ritz method.
Q.2. B) Answer the following questions (Any one)
(a) Give a one parameter Galerkin solution of the equation $-\nabla^{2} u=1$ in Ω
$u=0$ on Γ use trigonometric functions.
(b) Consider the differential equation $-\frac{d^{2} u}{d x^{2}}-u+x^{2}=0$ for $0<x<1$ with two sets of
boundary conditions: set 1 : $u(0)=0, u(1)=0$

$$
\text { set 2: } u(0)=1,\left(\frac{d u}{d x}\right)_{x=1}=1 . \text { Determine a three parameter solution, with }
$$ trigonometric functions using the Least Squares Method.

Q.3. A) Answer the following questions.
(a) Explain Least Squares Method.
(b) Explain Galerkin method.
Q.3. B) Answer the following questions (Any one)
(a) Find a one parameter approximation solution of nonlinear equation $-2 u \frac{d^{2} u}{d x^{2}}+\left(\frac{d u}{d x}\right)^{2}=$

4 for $0<x<1$ subject to the boundary conditions $u(0)=0$ and $u(1)=1$ with using PetrovGalerkin method with weight function $w=1$.
(c) Compute the coefficient matrix and the right hand side of the N parameter Ritz approximation of the equation $-\frac{d}{d x}\left[(1+x) \frac{d u}{d x}\right]=0$ for $0<x<1$ $u(0)=0, u(1)=1$ use algebraic polynomials for the approximation functions. Specialize your result for $N=2$.
Q.4. A) Consider the differential equation $-\frac{d^{2} u}{d x^{2}}-u+x^{2}=0$ for $0<x<1$ for the boundary conditions $\left(\frac{d u}{d x}\right)_{x=0}=1,\left(\frac{d u}{d x}\right)_{x=1}=0$ by using finite element method for the uniform mesh of three linear elements.

Q.4. B) Answer the following questions (Any one)

(a) Let u and $u h$, respectively, be the solution of $a(u, v)=L(v) \forall v \in V$, and $a(u h, v h)=$ $L(v h) \forall v h \in V h$. Let all the conditions for the Lax - Milgram Theorem hold. Then there is a constant C independent of the discretization parameter h such that $\|u-u h\| V \leq$ $C \underset{x \in V h}{i n f}\|u-X\| V$
(b) Consider the differential equation $-\frac{d^{2} u}{d x^{2}}=\cos \pi x$ for $0<x<1$ subject to the boundary conditions $\left(\frac{d u}{d x}\right)_{x=0}=0,\left(\frac{d u}{d x}\right)_{x=1}=0$ by using finite element method for the uniform mesh of three linear elements.

