Semester: 4

PARUL UNIVERSITY FACULTY OF APPLIED SCIENCE M.Sc., Summer 2022-23 Examination

Enrollment No:_____

Date: 20-03-2023

Subject Code: 11206251 Subject Name: Operator Theory	Time: 2:00pm to 4:30pm Total Marks: 60	
Instructions:1. All questions are compulsory.2. Figures to the right indicate full marks.3. Make suitable assumptions wherever necessary.4. Start new question on new page.		
 Q.1. A) Essay type/ Brief note (4x2) (Each of 04 marks) (a) Prove that all matrices representing a given linear operator T: X → X on normed space X relative to various bases for X have the same eigen value (b) The resolvent set ρ(T) of a bounded linear operator T on a complexity open; hence the spectrum σ(T) is closed. 	a finite dimensional les. x banach space X	(08)
 Q.1. B) Answer the following questions (Any two) (a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) (Each 1. Let X = C[0,1] and define T: X → X by Tx = vx, where v ∈ X is f σ(T). Note that σ(T) is closed. 2. Define Point spectrum and continuous spectrum. 	of 02 marks) ïxed. Find	(04)
(b) State and prove the Hilbert relation. (c) Let $T \in B(X, X)$, where X is a Banach space. If $ T < 1$, then $(1 - bounded linear operator on the whole space X and find (1 - T)^{-1}$	$(-T)^{-1}$ exists as a	(04) (04)
 Q.2. A) Answer the following questions. (a) Short note/ Brief note (2x2)/ Fill in the blanks. (Each of 02 marks) 1. Define ε - net and total boundedness. 2. State Compactness Criterion. 		(04)
(b)Let $T: X \to X$ be a compact linear operator and $S: X \to X$ a bounde a normed space X. Then prove that <i>TS</i> and <i>ST</i> are compact.	d linear operator on	(04)
Q.2. B) Answer the following questions (Any two) (a) If T_1 and T_2 are compact linear operators from a normed space X in space Y, show that $T_1 + T_2$ and T_2T_1 are compact linear operators.	nto a normed	(03)
(b) For the identity operator I on a normed space X, find the eigen values and as $\sigma(I)$ and $R_{\lambda}(I)$. (c) Let B be a subset of a metric space X, then if B is relatively compact the	d eigen spaces as well	(03) (03)
totally bounded.		(00)
 Q.3. A) Essay type/ Brief note (4x2) (Each of 04 marks) (a)A bounded linear operator P: H → H on a Hilbert space H is a project is self-adjoint and idempotent. (b)Let T: H → H be a bounded self-adjoint linear operator on a complex Hi prove that the eigenvectors corresponding to different eigenvalues of T are 	ion if and only if P lbert space H. Then orthogonal.	(08)
Q.3. B) Answer the following questions (Any two)(a) Short note/ Brief note (2x2)/ Schematically label the figures (2x2) (Eacl 1. What are positive operators?	n of 02 marks)	(04)
2. Under what conditions will the projection P be $(i)P = 0$? $(ii)P = I$? (b) $P = P_1P_2$ is a projection on H if and only if the projections P_1 and P_2 con P_2P_1	mmute, that is $P_1P_2 =$	(04)
(c) State and prove the Hellinger-Toeplitz theorem.		(04)

Q.4. A) Answer the following questions.	
(a) Short note/ Brief note $(2x2)$ / Fill in the blanks. (Each of 02 marks)	(04)
1.Define self-adjoint linear operator.	
2.Explain closed linear operator.	
(b) Let S and T be bounded self-adjoint linear operators on a complex Hilbert space. If $S \leq T$ and	(04)
$S \ge T$, show that $S = T$.	
Q.4. B) Answer the following questions (Any two)	
(a) Prove that the Hilbert adjoint operator T^* of a linear operator T is linear.	(03)
(b) Prove that the residual spectrum $\sigma_r(T)$ of a bounded self adjoint linear operator $T: H \to H$ on a complex Hilbert space H is empty.	(03)
(c) A densely defined linear operator T in a complex Hilbert space H is symmetric if and only if	(03)
$T \subset T^*$	