PARUL UNIVERSITY

PARUL INSTITUTE OF APPLIED SCIENCES MID SEMESTER INTERNAL EXAMINATION, APRIL 2023

BSC SEMESTER II

Subject Name: Biochemistry II Subject Code: 11102115

Date: 04/04/2023 Time: 08:00 am to 09:30 pm Maximum Marks: 40

Instructions:

1. All questions are compulsory and options are given in first and second question only.

2. Numbers to the right of question indicate the marks of respective question.

Q.1	Attempt any one question of the following.	(08)	CO	PO	PSO	Blooms
						Taxonomy
1.	Explain glycolysis with its energetics in detail.	04	CO2	PO1		Remembering
2.	Explain urea cycle and explain its energetics.	04	CO2	PO1		Remembering
Q.2	Attempt any three questions of the following.	(12)	CO	PO	PSO	Blooms
						Taxonomy
1.	What is anabolism and catabolism?	04	CO4	PO3		Evaluating
2.	Write down the cellular location of different carbohydrate	04	CO3	PO2		Evaluating
	metabolic pathways.					
3.	What is HMP shunt? Why it is important?	04	CO1	PO2		Evaluating
4.	Give SGPT/SGOT reaction and discuss its clinical	04	CO1	PO1		Applying
	significance.					
5.	Explain oxidative and non-oxidative deamination with	04	CO2	PO4		Evaluating
	examples.					
Q.3	Do as directed. Attempt <u>all five</u> questions.	(05)	CO	PO	PSO	Blooms
						Taxonomy
1.	Name five essential amino acids.	01	CO1	PO4		Remembering
2.		01	CO3	PO4		Remembering
	Which molecule act as precursor for Histidine synthesis?					
3.	What is protein turnover?	01	CO3	PO2		Understanding
4.	Give complete reaction of alcoholic fermentation.	01	CO4	PO1		Evaluating
5.	Give net reaction of TCA cycle.	01	CO4	PO1		Remembering

Q.4	Writ	Write correct option in your answer sheet for following <u>fifteen</u> multiple choice Questions.			(15)	CO	PO	PSO	Blooms
	fiftee								Taxonomy
1.	Whic	Which molecule act as link between TCA cycle and Urea			01	CO2	PO3		Creating
	cycle		ı	1					_
	(A)	Oxaloacetate	(B)	Melate					
	(C)	Fumerate	(D)	All of	above			l =	Ι
2.		wing is an example of non-essential amino a		l mi	•	01	CO1	PO1	Remembering
	(A)	Lysine	(B)	Threo					
	(C) Valine (D) Glutamine					P 1			
3.	_	vate act as precursor molecule for following				01	CO1	PO1	Evaluating
	(A)	Alanine	(B)	Valine					
	(C)	Leucine	(D)	All of	the abo		002	DO 4	D 1 '
4.		ein turnover of average human body is		25.75		01	CO3	PO4	Remembering
	(A)	50-100g	(B)	25-758					
5.	(C) 300-400g (D) 500-1000 High blood serum level of SGPT indicates				Joug	01	CO4	DO2	Damamharina
٥.	(A)	Hepatitis	(B)	Pancre	atitic	01	CO4	PO2	Remembering
	(C)	Gastritis	(D)		the abo	WA			
6.	` /	ch acts as electron carrier for oxidative deam	\ /		the abc	01	CO4	PO4	Analyzing
0.	(A)	NAD+	(B)	NADP) ₊	01	CO4	104	Anaryzing
	(C)	Both of above	(D)	None		re.			
7.	How many ATPs are utilized during Urea cycle?				<u> </u>	01	CO2	PO1	Applying
, ·	(A)	2	(B)	4		01	002	101	1 ippijiig
	(C)	3	(D)	6					
8.						Applying			
	(A)	5	(B)	4			ı		
	(C)	3	(D)	2					
9.	Cellu	lar location of Pyruvate dehydrogenase comple	ex	•		01	CO1	PO3	Understanding
	(A)	Cytosol	(B)) Mitochondrial ma					
	(C)	Inner membrane of mitochondria	(D)	Micros	somes				
10.	Acon	itase convertto				01	CO3	PO1	Analyzing
	(A)	Oxaloacetate to Citrate	(B)	Citrate	to Iso	citrate			
	(C)	Succinate to Fumerate	(D)	Melate to oxaloace			e		
11.	How many NADH2 will be produced from 1 glucose molecule			ecule		01	CO2	PO4	Remembering
	(A)	6	(B)	8					
	(C)	10	(D)	12					
12.	Subce	ellular location of Kreb's cycle is				01	CO1	PO3	Remembering
	(A)	Cytosol	(B)			ane of m	itochon	dria	
	(C)	Mitochondrial matrix	(D)	Micros	somes				

13.	Net substrate level ATP produced during glycolysis are				01	CO4	PO2	Understanding
	(A)	2	(B)	4				
	(C)	6	(D)	8				
14.	Which sugar is present in ATP?				01	CO1	PO1	Applying
	(A)	Ribose	(B)	Ribulose				
	(C)	Deoxyribose	(D)	Deoxyribulose				
15.	Which of the following is high energy phosphate compound?				01	CO3	PO2	Remembering
	(A)	Phosphoenolpyruvate	(B)	Glucose-6-Phosphate	•	•	•	
	(C)	Glycerol-3-phosphate	(D)	None of above				