Seat No: _____

.

Enrollment No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Summer 2021-22 Examination

Sen Sub Sub	hester: 8 ject Code: 203111453 ject Name: Digital Image processing for Biomedical	Date: 28/03/2022 Time: 10:30 am to 01:00 pm Total Marks: 60		
Inst 1. A 2. F 3. N 4. S	ructions: Il questions are compulsory. igures to the right indicate full marks. fake suitable assumptions wherever necessary. tart new question on new page.			
Q.1	 Objective Type Questions - (Fill in the blanks, one word answer, MCQ-no of MCQ) (All are compulsory) (Each of one mark) 1. Image having resolution of 512*512 will bytes of memory 2. Enlist various types of light source. 3. Let two of three Eigen values of a 3 × 3 matrix are -1 and 2 and if equals (four). What is the third Eigen value? 4. Define City Block Distance. 5. Define Upsampling. 6. What is Hermitian matrix ? 7. Define Subjective Fidelity. 8. Give full form of LPI and define it. 9. Define Structuring Elements. 10. What is Zero Crossing ? 11. Define High Contrast Image. 12. Enlist various color models. 	ot more than Five in case for storage. the determinant value	(15)	
Q.2	 13. What is pseudo color image processing ? 14. Full form of LZW is 15. An object is 20cm wide and is imaged with a sensor of size 8.8×6.6 mm What should be the required focal length? Answer the following questions. (Attempt any three) A) Draw and Explain the fundamental steps of digital Image processing applications of Digital Image Processing. B) Consider the image F=(1 1), Construct the matrix of order 4x4 	n from a distance of 0.3m. ing and also enlist	(15)	
Q.3	Hold and Interpolation technique for ordered dithering. Will the r C) Enlist and explain Image arithmetic operations with necessary application D) Enlist the need of Image Transform. Classify the Image Transform method A) i. Apply DFT to the following image and prove DFT Works. $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	results remain same? ns. ods and explain briefly.	(07)	

2	U	0	U
0	0	0	0
0	0	0	0
-0	0	0	0 -

ii. Prove that Hadamard transform works for the following image.

$$\mathsf{F} = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix}$$

B)

B)

i. Define Entropy. Calculate the entropy for the symbols given in table:

Symbols	1	2	3	4	5	6
Rk	0.4	0.2	0.2	0.1	0.08	0.02

ii. Explain Huffman Coding Algorithm and Construct the Huffman coding tree for the given data in above table.

OR

i. Consider the following image:

4	4	4	4	4
3	4	5	4	3
3	5	5	5	3
3	4	5	4	3
4	4	4	4	4

Write a procedure for histogram equalization.

ii. Define image inversion. Obtain the digital negative of the following 8×8 gray scale image.

122	150	200
225	225	225
250	250	240

Q.4 A) Enlist and explain Basic Morphological Algorithms in brief.

~

A) Consider the following image A and structuring element B; Perform the morphological (07) operations Erosion and Dilation.

	[11	18	13	12	l	Г1	1	11	
A=	12	2	22	22	,	B= 1	1	1	
		22	22	Z		L1	1	1	
		68	7(1)	6				• -	

B) Enlist and explain First order Edge Detection Operators in detail.

(08)

(07)

(08)