PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY

B. Tech. Winter 2023-23 - Examination

Semester: 3 Subject Code: 203115204 Subject Name: BASICS OF STRUCTURAL ANALYSIS

Date: 06/10/2022 Time: 2.00 pm to 4.30 pm Total Marks: 60

Instructions:

 2. Figures to the right indicate full marks. 3. Make suitable assumptions wherever necessary. 4. Start a new question on a new page. Q.1 Objective Type Questions - (All are compulsory) (Each of one mark) If the bending moment is constant, there is no force. Simple trusses are most often used as the : twisting of a structural member, when it is loaded by two equal and opposite forces. Kinematic indeterminacy of cantilever beam is are the balancing forces so that the structure doesn't undergo rigid body motion. trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 3. Make suitable assumptions wherever necessary. 4. Start a new question on a new page. Q.1 Objective Type Questions - (All are compulsory) (Each of one mark) If the bending moment is constant, there is no force. Simple trusses are most often used as the : twisting of a structural member, when it is loaded by two equal and opposite forces. Kinematic indeterminacy of cantilever beam is are the balancing forces so that the structure doesn't undergo rigid body motion. trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 4. Start a new question on a new page. Q.1 Objective Type Questions - (All are compulsory) (Each of one mark) If the bending moment is constant, there is no force. Simple trusses are most often used as the : twisting of a structural member, when it is loaded by two equal and opposite forces. Kinematic indeterminacy of cantilever beam is are the balancing forces so that the structure doesn't undergo rigid body motion. trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 Q.1 Objective Type Questions - (All are compulsory) (Each of one mark) 1. If the bending moment is constant, there is no force. 2. Simple trusses are most often used as the 3: twisting of a structural member, when it is loaded by two equal and opposite forces. 4. Kinematic indeterminacy of cantilever beam is 5 are the balancing forces so that the structure doesn't undergo rigid body motion. 6 trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 If the bending moment is constant, there is no force. Simple trusses are most often used as the : twisting of a structural member, when it is loaded by two equal and opposite forces. Kinematic indeterminacy of cantilever beam is are the balancing forces so that the structure doesn't undergo rigid body motion. trusses are mostly used as Electrical and telecom towers. Define Tri-axial stress. Define the Neutral axis. What is the change of slope in the loaded beam? What is the kinematic indeterminacy of a structure? is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 	(15)							
 Simple trusses are most often used as the : twisting of a structural member, when it is loaded by two equal and opposite forces. Kinematic indeterminacy of cantilever beam is are the balancing forces so that the structure doesn't undergo rigid body motion. trusses are mostly used as Electrical and telecom towers. Define Tri-axial stress. Define the Neutral axis. What is the change of slope in the loaded beam? What is the kinematic indeterminacy of a structure? is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 3: twisting of a structural member, when it is loaded by two equal and opposite forces. 4. Kinematic indeterminacy of cantilever beam is 5 are the balancing forces so that the structure doesn't undergo rigid body motion. 6 trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 4. Kinematic indeterminacy of cantilever beam is 5 are the balancing forces so that the structure doesn't undergo rigid body motion. 6 trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 are the balancing forces so that the structure doesn't undergo rigid body motion. trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 6 trusses are mostly used as Electrical and telecom towers. 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 7. Define Tri-axial stress. 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 8. Define the Neutral axis. 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 9. What is the change of slope in the loaded beam? 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 10. What is the kinematic indeterminacy of a structure? 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 11 is the member of force required to produce unit deflection. A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 A) Stiffness B) Flexibility C) Both D) None 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
 12. In which year Moment Distribution method was introduced? A) 1948 B) 1932 C) 1942 D) 1938 								
A) 1948 B) 1932 C) 1942 D) 1938								
13. In uniaxial stress on the oblique plane, the shear stress will be maximum when $\Theta = ___^\circ$								
A) 90 B) 45 C) 60 D) 30								
14. Stiffness of all intermediate members is given as a, $k = \underline{} * EI/L$								
A) 2 B) 1 C) 4 D) 3								
15. Due to vertical or horizontal shear release, the force release = $_$								
A) 2 B) 1 C) 4 D) 3	(1 =)							
Q.2 Answer the following questions. (Attempt any three).	(15)							
A) List out the formulas for the principal stress and principal plane.								
B) Enlist the Advantages of Fixed Ends or Fixed Supports.								
C) For the given roof truss, find out the forces in the member DE, DL and ML.								
12 kN $12 kN$ $12 kN$ $12 kN$ $12 kN$ $12 kN$								
6 kN $D E F$ 6								

- D) What is the kinematic indeterminacy of a below-listed structure?
 - 1. propped cantilever
 - 2. cantilever beam
 - 3. simply supported beam
 - 4. fixed-fixed beam

Q.3 A) Find out the slope at A & B, and also the maximum deflection value for the "simply-supported (07) beam AB of length L and stiffness EI, subjected to a UDL".

B) In the wall of a cylinder the state stress is given by, $\sigma_x = 85$ MPa (compressive), $\sigma_y = 25$ MPa (08) (tensile), and shear stress $\tau_{xy} = 60$ MPa Calculate the principal planes on which they act. Show it in a figure.

OR

B) What are the assumptions made for the design of the truss & types of the truss? With which criteria (08) the truss will be classified as a perfect truss or an imperfect truss?

OR

A)	Driv	ve Mo	ohr's	Firs	t The	orem	(Mol	hr - I) v	with a nea	at sketch.		(07)
B) Find the distribution factor for the given beam.											(08)	
									/			
Î	A	L		В	L		С	L	D			