\qquad

FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Winter 2022-23 Examination

Semester: 3
Subject Code: 203115203
Subject Name: Fluid mechanics

Date: 11/10/2022
Time: 02:00 pm to 04:30 pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 Objective Type Questions

1. When is the fluid called laminar?
a) Low viscosity
b) The density of the fluid is high
c) Reynolds number is greater than 2000
d) Reynolds number is less than 2000
2. A fluid in which shear stress is not proportional to the rate of shear strain is known as
3. What is the equation for absolute pressure.
4. Due the variation of venturi meter constant, venturi meter is not suitable for \qquad
5. Define the surface tension.
6. The force per unit length is the unit of \qquad
7. Bernoulli's equation is applied to
a) venturi meter b) orifice meter c) pitot tube d) all above
8. Relative density of mercury is \qquad
\qquad fluid.
9. Milk, blood and clay are the example of
10. write down the equation for rectangular notch.
11. A manometer is used to measure
a) Atmospheric pressure
b) Pressure in pipes and channels
c) Pressure in Venturi meter
d) Difference of pressures between two points in a pipe
12. Reynold's number is ratio of \qquad
13. A current meter is use to measure \qquad (velocity)
14. Define the capillarity.
15. The theoretical velocity of jet at vena contracta is (where $H=$ Head of water at vena contracta)
a) 2 gh
b) gh
c) $(2 \mathrm{gh})^{2}$
d) $(2 \mathrm{gh})^{0.5}$
Q. 2 Answer the following questions.
A) Explain about velocity potential function.
B) Explain the types of fluid flow.
C) Derive the equation for V notch.
D) Classify the notch and weir.
Q. 3 A) A differential manometer is connected at the to point C and D of to pipe as shown in figure. The pipe C contains a liquid of specific gravity $=1.5$ while pipe D contains liquid of specific gravity $=0.9$. the pressure at C and $\mathrm{D} 1 \mathrm{kgf} / \mathrm{cm}^{2}$ respectively. Find the difference in mercury level in the differential manometer.

B) Derive the continuity equation in three dimension.

OR
B) Derive the Euler's equation and write down the assumption.
Q. 4 A) The head of water over an orifice of diameter 100 mm is 10 m . the water coming out from orifice is collected in a circular tank of diameter 1.5 m . the rise of water level in this tank 1.0 m in 25 ec . Also the co-ordinate of a point the jet, measured from vena contracta are 4.3 m horizontal and 0.5 m vertical. Find the co- efficient Cd, Cv and Cc .

OR
A) An oil specific gravity 0.8 is flowing through a venturi meter having inlet diameter 20 cm and throat diameter 10 cm . the oil mercury differential manometer shows a reading of 25 cm . calculate the discharge of oil through the horizontal venturi meter. (assume $\mathrm{Cd}=0.98$)
B) Derive Equation for Total Pressure and Center of Pressure for incline plane Surface Submerged in Liquid.

