PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech. Winter 2022 - 23 Examination

Semester: 3 Subject Code: 203109211 Subject Name: Thermodynamics

Date: 08/10/2022 Time: 2:00pm to 4.30pm Total Marks: 60

(15)

Enrollment No:

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Objective Type Questions - (All are compulsory) (Each of one mark)

- 1. Which of the following is the unit of entropy
 - a) J/kg K
 - b) J/K
 - c) N m/kg Sec
 - d) J/kg
- 2. Triple point of a pure substance on P-V diagram is represented by a
 - a) Point
 - b) Line
 - c) Curve
 - d) Triangle
- 3. PMM2 is the machine which violates _____
 - a) Kelvin Plank Statement
 - b) Clausius Statement
 - c) Both a & b
 - d) None of the above
- 4. A cyclic heat engine operates between a source temperature of 927 °C and a sink temperature of 27°C. What will be the maximum efficiency of the heat engine?
 - a) 100%
 - b) 80%
 - c) 75%
 - d) 70%
- 5. Dryness Fraction of Dry Saturated Steam is
 - a) <1
 - b) >1
 - c) 0
 - d) None of the above
- 6. Heat flow into a system is ____, and heat flow out of the system is _____
 - a) Positive, Positive
 - b) Negative, Positive
 - c) Positive, Negative
 - d) Positive, Negative
- 7. What are the intensive and extensive properties? Give suitable examples.
- 8. What are the causes of irreversibility?
- 9. For a constant volume process, work done is _____
- 10. What do you mean by Exergy of a system? How it is differ from Energy?
- 11. The value of specific heat of water is ______ kJ/KgK

- 12. According to entropy principal, entropy of the universe is always _
- 13. A 2 kW electric resistance heater in a room is turned on and kept on for 30 min. The amount of energy transferred to the room by the heater is _____. (1800 KJ, 3600 KJ)
- 14. During throttling process enthalpy of a system will ______. (Increases, Decreases, Not change)
- 15. Arrangement of Components in Rankine Cycle is
 - a) Condenser, Turbine, Pump, Boiler
 - b) Turbine, Pump, Condenser, Boiler
 - c) Pump, Boiler, Turbine, Condenser
 - d) Boiler, Pump, Turbine, Condenser

Q.2 Answer the following questions. (Attempt any three)

- A) What are the limitations of 1st Law of thermodynamics? How 2nd law address them all.
- B) Draw the P-V-T surface diagram of pure substance. Explain critical point of pure substance.
- C) Draw only diagrams of showing equivalence between Kelvin Planck statement & Clausious statement & vice versa.
- D) Explain Quasi Static Process in detail.
- Q.3 A) A refrigerator operates on reversed Carnot cycle. Determine the power required to drive (07) refrigerator between temperatures of 42°C and 4°C if heat at the rate of 2 kJ/s is extracted from the low temperature region.

B) What is SFEE equation?	Derive the expression with suitable d	liagram. (08)
j	- · · · · · · · · · · · · · · · · · · ·	

OR

- B) Define entropy. With usual notation prove that $\Phi \delta Q/T \le 0.$ (08)
- Q.4 A) In a nozzle air at 627°C and twice atmospheric pressure enters with negligible velocity and (07) leaves at a temperature of 27°C. Determine velocity of air at exit, assuming no heat loss and nozzle being horizontal. Take Cp = 1.005 kJ/kg.K for air.

OR

A) Determine the COP of Refrigerator and Heat Pump with appropriate diagrams.	(07)
-)	()

B) Derive the efficiency equation for Brayton Cycle. Explain its working too. (08)

(15)