FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Winter 2022-23 Examination

Semester: 3

Subject Code: 203106201
Date: 03/10/2022
Time: 02:00 pm to 04:30 pm
Subject Name: Fundamentals of Signals and Systems

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions - (Fill in the blanks, one word answer, MCQ-not more than Five in case of MCQ) (All are compulsory) (Each of one mark)
5. The Laplace Transform of the signal $x(t)=\delta(t)$ is \qquad .
6. For the given function $H(s)=\frac{(s-1)}{(s+1)(s+4)}$, the system poles are \qquad .
7. Consider the system $y[n]=2 x[n]+5$. Is the function linear (True/False)?
8. A system which is linear is said to obey the rule(s) of \qquad .
9. $\int_{-\infty}^{1} \delta(\tau) d \tau$ is
i) $\delta(t)$
ii) $u(t)$
iii) $r(t)$
iv) None of the above
10. If $x(t) \leftrightarrow X(\omega)$. Then, $x(-t)$ will have Fourier transform \qquad .
11. The derivative of unit step function is called \qquad function.
12. The area under an impulse function is \qquad .
13. What is the full form of BIBO?
14. The z transform of $x(-n)$ is \qquad .
i) $X(z)$ ii) $X(-z)$ iii) $X\left(\frac{1}{z}\right)$ iv) $X\left(-\frac{1}{z}\right)$
15. If $x(t) \leftrightarrow X(\omega)$. Then, $x\left(t-t_{o}\right)$ will have Fourier transform \qquad .
16. Is the above system, i.e. $y[n]=x^{2}[n-2]$ time invariant (True/False)?
17. A continuous time system $y(t)=x(2 t)$ is \qquad .
i) linear, causal and time variant
ii) nonlinear, non-causal and time invariant
iii) nonlinear, causal and time variant
iv) linear, non-causal and time variant
18. If $x_{1}[n] \leftrightarrow X_{1}[z]$ and $x_{2}[n] \leftrightarrow X_{2}[z]$. Then, $x_{1}[n] \otimes x_{2}[n]$ will be \qquad .
19. The z - transform of $\delta(n+3)$ is \qquad .
Q. 2 Answer the following questions. (Attempt any three)
A) Solve the second order differential equation $y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=x(t)$ with the initial conditions $y(0)=2, y^{\prime}(0)=1$, and $x(t)=e^{-t} u(t)$.
B) Find the Laplace transform $X(s)$ for $x(t)=e^{2 t} u(t)+e^{-3 t} u(-t)$.
C) Find the z transform of unit step sequence $u[\mathrm{n}]$.
D) Define: i) even and odd signals ii) step and ramp signals iii) continuous and discrete signals iv) periodic and non-periodic signals v) deterministic and random signals
Q. 3 A) For a continuous time system defined as $y(t)=x(-t)$. Check, if the system is linear, dynamic, time variant and causal.
B) The input $x(t)$ and the impulse response $h(t)$ of a continuous time LTI system are given by
$x(t)=u(t)$ and $h(t)=e^{-\alpha t} u(t) ; \alpha>0$. Compute the output $y(t)$ with the help of convolution.
OR
B) Find $X(z)$ and its ROC for a finite sequence $x(n)=\{5,2,-1,0,-2,-3\}$.
Q. 4 A) The output $y[n]$ of a discrete time LTI system is found to be $2\left(\frac{1}{3}\right)^{n} u[n]$ when the input $x[n]$ is $u[n]$. Find the system function $H[z]$.

OR
A) The output $y(t)$ of a continuous time LTI system is found to be $2 e^{-3 t} u(t)$ when the input $x(t)$ is $u(t)$. Find the system function $H[s]$
B) i) Explain Nyquist sampling theorem. What are the effects of under sampling?
ii) Consider a continuous time exponential signal $x(t)=e^{-a t} u(t) ; a>0$. Find its Fourier transform.

