Seat No: _____

Enrollment No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Winter 2022 - 23 Examination

Semester: 3Date: 03/10/2022Subject Code: 203106201Time: 02:00 pm to 04:30 pSubject Name: Fundamentals of Signals and SystemsTotal Marks: 60Instructions:Instructions are compulsory.1. All questions are compulsory.Figures to the right indicate full marks.3. Make suitable assumptions wherever necessary.A Start new question on new page.		Date: 03/10/2022 Time: 02:00 pm to 04:30 pm Total Marks: 60	
Q.1	Objective Type Questions - (Fill in the blanks, one word answer, MCQ-not of MCQ) (All are compulsory) (Each of one mark) 1. The Laplace Transform of the signal $x(t) = \delta(t)$ is 2. For the given function $H(s) = \frac{(s-1)}{(s+1)(s+4)}$, the system poles are	more than Five in case	(15)
	3. Consider the system $y[n] = 2x[n] + 5$. Is the function linear (True/False)? 4. A system which is linear is said to obey the rule(s) of 5. $\int_{-\infty}^{1} \delta(\tau) d\tau$ is i) $\delta(t)$ ii) $u(t)$ iii) $r(t)$ iv) None of the above		
	 6. If x(t) ↔ X(ω). Then, x(-t) will have Fourier transform 7. The derivative of unit step function is called function. 8. The area under an impulse function is 9. What is the full form of BIBO? 10. The z transform of x(-n) is i) X(z) ii) X(-z) iii) X(1/z) iv) X(-1/z) 		
	11. If $x(t) \leftrightarrow X(\omega)$. Then, $x(t-t_o)$ will have Fourier transform 12. Is the above system, i.e. $y[n] = x^2[n-2]$ time invariant (True/False)? 13. A continuous time system $y(t) = x(2t)$ is	·	
	i) linear, causal and time variant ii) nonlinear, causal and time variant iii) nonlinear, causal and time variant iv) linear, non-causal and time variant i	ne invariant variant	
Q.2	Answer the following questions. (Attempt any three) A) Solve the second order differential equation $y''(t) + 5y'(t) + 6y(t) =$ conditions $y(0) = 2$, $y'(0) = 1$, and $x(t) = e^{-t}u(t)$.	x(t) with the initial	(15)
Q.3	 B) Find the Laplace transform X(s) for x(t) = e^{2t}u(t) + e^{-3t}u(-t). C) Find the z transform of unit step sequence u[n]. D) Define: i) even and odd signals ii) step and ramp signals iii) continus signals iv) periodic and non-periodic signals v) deterministic and ram A) For a continuous time system defined as y(t) = x(-t). Check, if the system variant and causal. 	uous and discrete ndom signals stem is linear, dynamic,	(07)
	B) The input $x(t)$ and the impulse response $h(t)$ of a continuous time L'	TI system are given by	(08)

Page 1 of 2

x(t) = u(t) and $h(t) = e^{-\alpha t}u(t); \alpha > 0$. Compute the output y(t) with the help of convolution. OR

B) Find X(z) and its ROC for a finite sequence $x(n) = \{5, 2, -1, 0, -2, -3\}$. (08)

Q.4 A) The output y[n] of a discrete time LTI system is found to be $2\left(\frac{1}{3}\right)^n u[n]$ when the input x[n] is **(07)** u[n]. Find the system function H[z].

OR

- A) The output y(t) of a continuous time LTI system is found to be $2e^{-3t}u(t)$ when the input (07)
- x(t) is u(t). Find the system function H[s]
- B) i) Explain Nyquist sampling theorem. What are the effects of under sampling? (08)
 - ii) Consider a continuous time exponential signal $x(t) = e^{-at} u(t)$; a > 0. Find its Fourier transform.