Seat No: Enrollment No:

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech. Winter 2022 - 23 Examination

Semester: 3 Date: 08/10/2022

Subject Code: 203101215 / 203101205 Time: 2:00pm to 4:30pm

Subject Name: Fundamentals of Fluid Mechanics Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Objective Type Questions - All are compulsory (Each of one mark)

(15)

- 1. Which of the following is a type of fluid based on viscosity?
 - a) Real Fluid

b) Ideal Fluid

c) Newtonian Fluid

- d) All the above
- 2. Which among the following is an assumption of Hagen-Poiseuille equation?
 - a) Fluid is uniform

b) Fluid is laminar

c) Fluid is turbulent

- d) Fluid is compressible
- 3. Which among the following have the same forces acting on them?
 - a) Dynamic similarity

b) Geometric similarity

c) Conditional similarity

- d) Kinematic similarity
- 4. If a liquid enters a pipe of diameter d with a velocity v, what will its velocity at the exit if the diameter reduces to 0.5d?
 - a) V

b) 0.5 V

c) 2V

- d) 4 V
- 5. What type of flow can be taken for granted in a pipe of a uniform cross-section?
 - a) Steady flow

b) Unsteady flow

c) Uniform flow

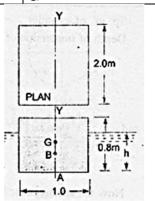
- d) Non-Uniform flow
- 6. The SI unit of Dynamic Viscosity is.....
- 7. An is a thermodynamic process in which there is no heat transfer from in or out of the system.
- 8. Moment of Inertia about an axis passing through C.G. and parallel to base (I_G) for rectangle is given by the formula......
- 9. A rectangular plane surface is 2 m wide and 3 m deep. Its lie on vertical plane in water. Its total pressure force on the plane surface will bewhen its upper edge is horizontal and coincide with water surface.
- 10. The centre of pressure h* will be when $I_G = 4.5 \text{ m}^4$, $A = 6 \text{ m}^2$ and $\overline{h} = 4 \text{m}$.
- 11. What is the SI unit of Kinematic Viscosity?
- 12. Write the statement of PASCAL LAW?
- 13. Calculate the pressure due to column of 0.3 m of water. Take density of water as 1000 Kg/m³
- 14. What is Piezometer?
- 15. Write the equation of gauge pressure for U-tube Manometer.

Q.2 Answer the following questions. (Attempt any three)

(15)

- A) Calculate the specific weight, density, specific gravity, specific volume and mass of one liter of liquid which weighs 7N.
- B) Write in detail about the different types of Fluid? Draw the graph of shear stress verses velocity gradient.
- C) Calculate the capillary rise in glass tube of 2.5 mm diameter which is immersed vertically in water and mercury. Take surface tension $\sigma = 0.0725$ N/m for water and $\sigma = 0.52$ N/m for mercury in contact with air. The specific gravity of mercury is 13.6 and angle of contact is 130°
- D) Derive the equation for Hydrostatic Law with neat sketch?

(08)


(07)

(07)

(08)

<u>, </u>			
a) Stream line	b) Path line	c) Streak line	d) Potential Line
e) Continuity equation		f) Flow net	g) Stream function

B) A block of wood of specific gravity 0.7 floats in water. Find the meta centric height of block if its size is 2m X 1m X 0.8m.

OR

- B) In a two-dimensional, incompressible flow the fluid velocity components are given by: u = x 4y and v = -y 4x. Show that the flow satisfies the continuity equation and obtain the expression for the stream function. If the flow is potential (irrotational) obtain also the expression for the velocity potential.
- **Q.4** A) Derive the continuity equation in Cartesian coordinates.

- A) Derive the momentum equation for boundary layer by Von Karman theorem.
- B) Derive on the basis of dimensional analysis suitable parameters to present the thrust developed by propeller. Assume that the thrust P depends upon the angular velocity "w", speed of advance "V", Diameter "D", dynamic viscosity " μ ", mass density "P", elasticity of fluid medium which can be denoted by the speed of sound in medium "c" given that the thrust p developed by the propeller is the function of angular velocity "w", speed of advance "V", diameter "D", dynamic viscosity " μ ", mass density "p" and the velocity of sound "p".