Seat No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Summer 2022-23 Examination

Semester: 4 Subject Code: 203120255 Subject Name: Elements of Reservoir Engineering

Enrollment No:

Instructions:

1. All questions are compulsory.

- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Objective Type Questions - (Fill in the blanks, one word answer, MCQ-not more than Five in (15) case of MCQ) (All are compulsory) (Each of one mark)

- 1. Define Bubble Point pressure?
- 2. Explain variation of Oil formation volume factor (Bo) with pressure in short with a graph?
- 3. Write down the formula of Oil compressibility below bubble point pressure?
- 4. What do you mean by Effective Porosity?
- 5. What do you mean by Residual Oil saturation?
- 6. In which drive mechanism gas-oil ratio increases continuously in up-structure wells.
- 7. Write down the pressure equation of the Ei-Function Solution.
- 8. Material Balance Equation (MBE) is ______ dimensional equation.

9. Low API gravity oil reservoir with an oil-water contact will have a ______ transition zone than a high API gravity oil reservoir

10. A well that only partially penetrates the pay zone could result in ______ flow.

11. When the pressure in the reservoir is declining linearly, i.e., at a constant declining rate is called ______.

12. Which oil reservoirs are having gas-oil ratios between 2,000-3,200 scf/STB?

- (A) Ordinary black oil (B) Low-shrinkage crude oil
- (C) High-shrinkage (volatile) crude oil
- (D) Near-critical crude oil

13. What is the effect on the additional pressure loss if skin value increases from 2 to 4 and effective permeability reduces from 50 mD to 25 mD assuming other parameters remaining are the same.

- (A) reduces to half (B) gets doubled
- (C) increases four times (D) remains same

14. An increased well inflow rate (Q) can be achieved by:

(A) deci	reasing	g the factor (k*h)	(B) increa	asin	g skin	facto	r
(\mathbf{O}) 1	•	1				• .	

(C) decreasing r_e/r_w

(D) increasing viscosity

15. Where capillary pressure is zero?

- (A) Free water level (FWL)
- (C) Gas-Oil contact (GOC)

(B) Water-Oil contact (WOC)(D) Gas-Water contact (GWC)

Q.2 Answer the following questions. (Attempt any three)

A) Explain the Differential liberation (Vaporization) test in detail with a diagram?

B) Length and diameter of core plug are 2 cm and 2.52 cm respectively. Oil viscosity is 1.82 cp. Inlet pressure and outlet pressure is 2 atm and 1 atm respectively. Flow rate is 0.275 cm³/sec. Calculate the permeability of the core sample in mD?

C) Explain High-shrinkage (volatile) crude oil with P-T diagram and liquid shrinkage curve.

D) A core sample is analyzed in the laboratory which yielded the following parameters: Porosity = 0.22, Permeability = 80 mD. Observed capillary pressure is 6.5 psi at Sw = 50%. Assume interfacial tension is 45 dynes/cm and angle of contact is 45° . Calculate the Leverett J-Function for a core sample at a saturation of 50% up to three digits.

Q.3 A) An oil well produced at a constant rate of 320 STB/day. Total production during constant rate (07) was reported to be 0.245 MMSTB. After this period well experienced a constant decline of 18% per year and was abandoned when reached an economic limit of 85 STB/day. Calculate the total time (in years) for which the well had produced? (1 year = 365 days).

B) An oil well is producing at a constant flow rate of 300 STB/day under unsteady state flow (08) conditions. The reservoir has the following rock and fluid properties: Bo = 1.25 bbl/STB, $\mu o = 1.5$ cp, $c_t = 12*10^{-6} \text{ psi}^{-1}$, ko = 60 md, h = 15 ft, $p_i = 4000 \text{ psi}$, $\phi = 15\%$, $r_w = 0.25$ ft. Calculate the bottomhole flowing pressure after 10 hours of production.

OR

B) Derive the flow rate equation for Linear Flow of Compressible Fluids (Gases)?

(08) (07)

Q.4 A) C	alculate average oil and connate water saturation (in %) from following measurements:							
	Sample	Thickness, ft	Porosity, %	Oil saturation, %				
	1	1.2	10	75				
	2	1.4	12	77				
	3	1.6	14	71				
	4	1.8	15	68				
	5	2.0	13	74				
	6	2.2	16	72				
OR								

A) An oil well is producing at a constant oil flow rate of 1250 STB/day under a semisteady-state (07) flow regime. Well testing data indicate that the pressure is declining at a constant rate of 5.64 psi/hr. Following additional data are available: h = 35 ft, $\phi = 18\%$, Bo = 1.43 bbl/STB, ct = 14*10⁻⁶ psi⁻¹. Calculate the well drainage area in Acres?

B) Explain the Pressure-Temperature diagram for a multicomponent system in details?

(08)