B.Tech. Summer 2022-23 Examination

Semester: 4

Subject Code: 203106257

Date: 27/03/2023
Time: 02:00 pm to 04:30 pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions - (All are compulsory) (Each of one mark)
5. Force is a vector quantity, whereas distance is scalar. Work is defined as the product of force and distance, which is given by \qquad -
a) Cross product
b) Dot product
c) Addition of two vectors
d) Cannot be calculated
6. Divergence can be computed only for a vector. Since it is the measure of outward flow of flux from a small closed surface as the volume shrinks to zero, the result will be directionless.
a) True
b) False
7. From a point charge + Q, the electric field spreads in all 360 degrees. The calculation of electric field in this case will be spherical system. Thus it is \qquad _.
a) Charge in space
b) Charge in box
c) Charge in dielectric
d) Uncharged system
8. Div $($ Grad $V)=(\operatorname{Del})^{2} V$, which is the \qquad . A function is said to be harmonic in nature, when its Laplacian tends to zero.
a) Laplacian operation
b) Curl operation
c) Double gradient operation
d) Null vector

05 . If $\mathrm{Vab}=-\int \mathrm{E} . \mathrm{dl}$ is the relation between potential and field then it is given by \qquad integral.
a) Line
b) Curl
c) Surface
d) Volume
06. Three charged cylindrical sheets are present in three spaces with $\sigma=5$ at $\mathrm{R}=2 \mathrm{~m}, \sigma=-2$ at $\mathrm{R}=4 \mathrm{~m}$ and $\sigma=-$ 3 at $R=5 \mathrm{~m}$. Value of the flux density at $R=3 \mathrm{~m}$ is \qquad .
07. Curl is always defined for vectors only. The curl of a vector is a vector only. The curl of the resultant vector is also a \qquad only.
08. Six equal point charges $\mathrm{Q}=10 \mathrm{nC}$ are located at $2,3,4,5,6$ and 7 m . The potential at origin is \qquad .
09. The range of Cartesian system is one to infinity. Thus the minimum scalar value of the system is \qquad .
10. If a point charge is single dimensional. The three dimensional imaginary enclosed surface of a point charge will be \qquad .
11. Give expression of the vector potential and field in terms of E .
12. Calculate the dipole moment of a dipole with equal charges 2 C and -2 C separated by a distance of 2 cm .
13. Find the potential of the function $V=60 \cos \theta / r$ at the point $P(3,60,25)$.
14. What will be the potential due the dipole when the angle subtended by the two charges at the point P is perpendicular?
15. The Maxwell second equation that is valid in any conductor is given by \qquad .
Q. 2 Answer the following questions. (Attempt any three)
A) Discuss rectangular co-ordinate system.
B) If $A=2 a^{\wedge} x-3 a^{\wedge} y+a^{\wedge} z$ and $B=-4 a^{\wedge} x-2 a^{\wedge} y+5 a^{\wedge} z$. Find (1) A. B \& (2) A x B.
C) Define electric field and electric flux density.
D) Explain Gauss's law.
Q. 3 A) Explain cylindrical co-ordinate systems.
B) Describe boundary conditions for perfect dielectric materials.

OR

B) Explain potential gradient with necessary mathematical expression.
Q. 4 A) Describe electric potential from a point charge with electric field.
A) Transform $F=10 a^{\wedge} x-8 a^{\wedge} y+6 a^{\wedge} z$ into F in spherical co-orindates.
B) Describe Continuity of current. Derive the differential form of the continuity equation of the current $\nabla \cdot \underline{J}$

