Date: (10/08/2022)

Time: (1hr: 30min)

(12)

Total Marks: 40

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY Diploma Engineering, Mid semester Examination

Semester: 3rd Sem Subject Code: (03608207) Subject Name: Electronic Devices and Circuits Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. English version is considered to be Authentic.

Q.1 Answer any six out of Ten. (2 Marks Each)

- 1. Define: Kirchhoff's current law with example.
- 2. What is Active Element?
- 3. Define: Superposition theorem.
- 4. Define: Mesh.
- 5. What is Loop?
- 6.What is Network?
- 7. What is Active Network?
- 8. Define: Node
- 9. What is Branch?
- 10. What is Passive Network?
- Q.2 A) Using Thevenin's theorem find the current through the resistance R and voltage across (03) it for the circuit shown in Figure.1

OR

A) Explain Kirchhoff's voltage law (KVL) with example.	(03)
B) Find V _{TH} , R _{TH} and the load current I _L flowing through and load voltage across the load	(03)
resistor in Figure.2 by using Thevenin's Theorem.	
OR	
P) Evaloin Maximum Dower Transfer Theorem	

B) Explain Maximum Power Transfer Theorem.	(03)
C) Find the Norton's equivalent circuit at terminals A-B for the circuit shown in Figure.4	(04)
and calculate value to I _L , using equivalent circuit.	

OR

	C) Draw R-L and R-C circuits and write the applications of R-L-C circuits.	(04)
	D) Explain Norton's Theorem with Example.	(04)
Q.3	A) Write down Thevenin's Theorem and explain it.	(03)
	OR	
	A) Solve the given circuit in Figure 5 to find the current through 10 Ω using Thevenin's	(03)
	Theorem.	
	B) Explain Voltage Divider rule with one example.	(03)
	OR	
	B) Find the current through 10Ω resistor in Figure.3 using Norton's theorem.	(03)
	C) Explain Current Divider rule with one example.	(04)
	OP	

0N	
C) Determine the current flowing 15 Ω resistor using Norton's theorem for Figure.6.	(04)
D) Explain Superposition theorem with examples.	(04)

Page 2 of 2