$\qquad$
PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY
Diploma Engineering, Mid semester Examination
Semester: 3
Subject Code: 03613203
Subject Name: Mechanisms for Machines and Aircrafts

Date: (08/08/2022)
Time: ( $1 \mathrm{hr}: 30 \mathrm{~min}$ )
Total Marks: 40

## Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. English version is considered to be Authentic.
Q. 1 Answer any six out of Ten. (2 Marks Each)
5. Define M echanism and give its example
6. Define Theory of Machine.
7. Define Kinetics and Statics.
8. Define Kinematic link and give its example.
9. Define Completely and Incompletely constraint motion.
10. Define angular acceleration and linear acceleration.
11. Give relation between linear acceleration and angular acceleration.
12. Give relation between linear acceleration and angular velocity.
13. Define Kinematics and Dynamics
14. Define Inversion and give its example.
Q. 2 A) Discuss four bar chain with neat diagram.

## OR

A) Write a short note on double slider crank chain with neat diagram.
B) Discuss single slider crank chain with neat diagram.

## OR

B) Explain Sub Divisions of Theory of M achines
C) What do you mean by Kinematic pair? Give its classification based on type of contact between the elements.

## OR

C) Give classification of Kinematic pair based on type of relative motion between the elements.
D) In a four bar chain $A B C D, A D$ is fixed and is 150 mm long. The crank $A B$ is 40 mm long and
rotates at 120 r.p.m. clockwise, while the link $C D=80 \mathrm{~mm}$ oscillates about D . BC and AD are of equal length. Find the angular velocity of link $C D$ when angle $B A D=45^{\circ}$.
Q. 3 A) Name the inversion of Single Slider Crank Chain.
B) Name the inversion of Four bar chain.
C) Explain Types of Constraint M otion with figure.
D) The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The Crank is 150 mm and the connecting rod is 600 mm long. Determine : 1 . Linear velocity of the Midpoint of the connecting rod, and 2 . angular velocity and of the connecting rod, at a crank Angle of $60^{\circ}$ from inner dead center position.

