PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY Diploma Engineering, Mid semester Examination

Semester: 3 Subject Code: 03613203 Subject Name: Mechanisms for Machines and Aircrafts		Date: (08/08/2022) Time: (1hr: 30min) Total Marks: 40	
Ins 1. A 2. N 3. F 4. F	tructions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	 Answer any six out of Ten. (2 Marks Each) 1. Define Kinematics and Dynamics. 2. Define Theory of Machine. 3. Define Kinetics and Statics. 4. Define Kinematic link and give its example. 5. Define Completely and Incompletely constraint motion. 6. Define angular velocity and linear velocity. 7. Give relation between linear acceleration and angular acceleration. 8. Give relation between linear acceleration and angular velocity. 9. Define Mechanism and give its example. 10. Define Inversion and give its example. 	(12)	
Q.2	A) Explain Sub Divisions of Theory of Machines.	(03)	
	 A) Explain double slider crank chain with neat diagram. B) Explain single slider crank chain with neat diagram. 	(03) (03)	
	B) Explain four bar chain with neat diagramC) What do you mean by Kinematic pair? Give its classification based on type of conthe elements.	(03) ntact between (04)	
	OR		
	 C) Give classification of Kinematic pair based on type of relative motion between th D) In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC of equal length. Find the angular velocity of link CD when angle BAD = 60°. 	long and (04) and AD are	
Q.3	 A) Enlist the inversion of Single Slider Crank Chain. B) Enlist the inversion of Four bar chain. C) Explain Types of Constraint Motion with figure. D) The crank of a slider crank mechanism rotates clockwise at a constant speed of Crank is 150 mm and the connecting rod is 600 mm long. Determine : 1. Linear Midpoint of the connecting rod, and 2. angular velocity and of the connecting rod Angle of 45° from inner dead center position. 	(03) (03) (04) 300 r.p.m. The (04) velocity of the od, at a crank	

Page 1 of 1