Seat No:

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Winter 2019 - 20 Examination

Semester: 3 Subject Code: 20319 Subject Name: Matl	01203 nematics-III		Date: 04/12/2019 Time: 2:00pm to 4 Total Marks: 60	4:30pm
Instructions: 1. All questions are co 2. Figures to the right 3. Make suitable assu 4. Start new question	ompulsory. indicate full marks. mptions wherever necessary. on new page.			
Q.1 Objective Typ 1. The coeffi	e Questions cient of correlation r =			(15)
(a) $\pm \sqrt{b_{yx}}$	$+b_{xy}$ (b) $\pm \sqrt{b_{yx} * b_{xy}}$	(c) $\pm \sqrt{b_{yx} - b_{xy}}$	(d) $b_{yx} * b_{xy}$	
2. In Simpson	n's $1/3^{rd}$ rule, the number of	of intervals (n) should	be multiple of	
(a) 3	 (b) 1	(c) 2	(d) none of these	
3. The rate of	f convergence of Bisection	Method is	·	
(a) 2	(b) 1.5 first divided difference [(c) 1	(d) None of these	
4. Newton s	This divided difference $[x_0]$	$, x_1] = __\$		
(a) $y_1 - y_0$	(b) $\frac{y_1 - y_0}{x_1 - x_0}$	(c) $\frac{y_1 - y_0}{x_0 - x_1}$	(d) None of these	
5. The Lapla	ce Transform of $t^{\frac{-1}{2}}$ is	·		
$(\mathbf{a})\frac{\pi}{\sqrt{c}}$	(b) $\sqrt{\frac{\pi}{s}}$	(c) $\frac{\sqrt{\pi}}{c}$	(d) none of these	
6. If the corr	relation coefficient $r = \pm 1$,	then the angle betwe	en the regression lines θ	
=	·			
7. $EV = _$				
8. $L^{-1}\{1\} =$ 9. If $I\{f(t)\}$.	$-\underline{\overline{f}(s)}$ then $\left\{ O_{at}^{at}f(t) \right\} =$			
10. Write the l	Laplace equation.			
11. Gauss Seid	del method converges faste	er than Gauss Jacobi	method. True/Fa	lse
12. The non-li	near equation $f(x) = x^3 + 4$	$4x^2 - 10$ has at least of	ne real root in the interval	1[0,1]
True/Fals	e			
13. The regres 14. The conve	sion coefficients are indepergence of Newton Raphso	endent of scale but n n method is quadrati	ot of origin. True/F a c. True/F a	alse alse
15. The solution	on of the partial differentia	l equation $z = px + q$	$y + 2\sqrt{pq}$ is	
z = ax + by	$v + 2\sqrt{ab}$		True/Fa	lse

Q.2 Answer the following questions. (Attempt any three)

A) Find the coefficient of rank correlation.

1	i ma the	coonici			Jui 1011.						
	x	35	40	42	43	40	53	54	49	41	55
	у	102	101	97	98	38	101	97	92	95	95

B) Using Runge–Kutta method of fourth order, solve $\frac{dy}{dx} = x + y$, y(0)=1 at x = 0.4 taking

h=0.2.

(15)

Enrollment No: _

C) Construct Newton's forward interpolation polynomial for the following data :

v 1 3 8 16	x	4	6	8	10
	У	1	3	8	16

Hence evaluate *y* for x=5.

D) Solve the partial differential equation $\frac{\partial^2 z}{\partial r^2} - 2 \frac{\partial^2 z}{\partial r \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{2x+5y}$

Q.3 A) (i) Using Laplace transformation, solve the initial value problem

$$y' + 2y' + 5y = e^{-t} \sin t, \qquad y(0) = 0, y'(0) = 1$$
(ii) Evaluate $L^{-1}\left\{\frac{6s-8}{s^2-s-6}\right\}$
(03)

B) (i) Find a linear law of the form Y=aX+b

Y	29	33	48	59		
X 10 12 22 27						
Compute V when V-15 kg						

Compute Y when X=15 kg.

(ii) Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$, with n = 6 using Simpson's 1/3 rule.

OR

B) (i) Solve by using method of separation of variables $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ given $u(x,0) = 4e^{-x}$ (05)

- (03)(ii) Form the partial differential equations from the relation z = ax + by + ab
- **Q.4** A) (i) Use Lagrange's method to solve x(y-z)p + y(z-x)q = z(x-y)(04)
 - (ii) Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \cos y$ given that $\frac{\partial z}{\partial y} = -2\cos y$ when x = 0 and z = 0 when y is a (03)multiple of π .

OR

- A) (i) Find a positive real root for the equation $x^3 7x + 3 = 0$ using Newton-Raphson (04)Method (03)
 - (ii) Using Lagrange's formula, find f(3) for the following data:

x:	0	1	2	5
f(x):	2	3	12	147

B) (i) Solve the following System of linear Equations using Gauss Seidel's Method (05) $12x_1 + 3x_2 - 5x_3 = 1$, $x_1 + 5x_2 + 3x_3 = 28$, $3x_1 + 7x_2 + 13x_3 = 76$ correct up to three decimal places taking initial values as (1,0,1)(03)

(ii) Find
$$L \left\{ \frac{1-\cos t}{t} \right\}$$

(05)

(03)

(04)