Semester: 3

Subject Code: 203105201/03105201
Date: 25-11-2019
Subject Name: Digital Electronics

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions (All are compulsory) (Each of one mark)
5. The truth table for an S-R flip-flop has how many VALID entries?
a) 1
b) 2
c) 3
d) 4
6. The sequential circuit is also called \qquad _.
7. The binary representation of BCD number 00101001 (decimal 29) is \qquad .
8. It should be kept in mind that don't care terms should be used along with the terms that are present in \qquad
a) Minterms
b) Expressions
c) K-Map
d) Latches
9. The code where all successive numbers differ from their preceding number by single bit is
\qquad —.
10. The following switching functions are to be implemented using a decoder:
$\mathrm{f} 1=\sum \mathrm{m}(1,2,4,8,10,14) \mathrm{f} 2=\sum \mathrm{m}(2,5,9,11) \mathrm{f} 3=\sum \mathrm{m}(2,4,5,6,7)$
The minimum configuration of decoder will be \qquad
a) 2 to 4 line
b) 3 to 8 line
c) 4 to 16 line
d) 5 to 32 line
11. A basic S-R flip-flop can be constructed by cross-coupling of which basic logic gates?
a) AND or OR gates
b) XOR or XNOR gates
c) NOR or NAND gates
d) AND or NOR gates
12. \qquad flip-flops are required to make a MOD-32 binary counter.
13. Bidirectional shift registers can shift data either right or left.
A.True
B.False
14. If a signal passing through a gate is inhibited by sending a LOW into one of the inputs, and the output is HIGH, the gate is $\mathrm{a}(\mathrm{n})$:
A.AND
B.NAND
C.NOR D.OR
15. How is a J-K flip-flop made to toggle?
16. If an active-HIGH S-R latch has a 0 on the S input and a 1 on the R input and then the R input goes to 0 , the latch will be \qquad -.
17. Convert binary $111111 \overline{110010 \text { to hexadecimal. }}$
18. The voltages in digital electronics are continuously variable.
A.True
B. False
19. Assign the proper even parity bit to the code 1100001.
A. 11100001
B. 1100001
C. 01100001
D. 01110101
Q. 2 Answer the following questions. (Attempt any three)
A) Find the complement of (a)A' B + C D' (b) $A B+C D=0$
B) Illustrate JK Flipflop.
C) Find the hex sum of $(93)_{16}+(\mathrm{DE})_{16}$.
D) Simplify the Boolean expression $F=C(B+C)(A+B+C)$.
Q. 3 A) Minimize function $f(A, B, C, D)=\sum(0,1,2,3,5,7,8,10,12,13,15)$ using tabulation Method. Note that this is in decimal form.
B) Explain 3-bit Ripple counter using JK flip-flop along with timing diagram.

OR

B) Write short note on 4-bit (MOD-4) ring counter.
Q. 4 A) Write difference between Decoder and Demultiplexer.

OR

A) What is a decoder? Draw the logic circuit of a 3 line to 8 line decoder and explain its Working.
B) Minimize function $\mathrm{F}=\Sigma(0,2,4,8,10,13,15,16,18,20,23,24,26,32,34,40,41,42,45,47$, $48,50,56,57,58,60,61$) using K-Map.

