PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY
B.Tech. Winter 2019-20Examination

Semester: 3
Subject Code: 203103205/03103203
Subject Name: Material \& Energy Balance Computations
Date: 29/11/2019
Time: 2.00 pm to 4.30 pm
Process Calculation

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions -
5. Define Normality.
2.Steady state is defined as
3.1 Btu = \qquad Joules
6. Sherwood number(Sh) is expressed as \qquad
7. Specific gravity is ratio of \qquad and \qquad
8. Units of viscosity in CGS system \qquad
9. Boyle's is
(A) PV = Const. (B) P/V = Const.
(C) $\mathrm{PT}=$ Const.(D)
(D) $\mathrm{P} / \mathrm{T}=$ Const.
10. Distillation is defined as \qquad
11. Reynolds number is expressed as \qquad
12. Define Roult's law.
13. Reynolds number depends upon \qquad at constant temperature and pressure.
14. Dry bulb temperature is greater than the wet bulb temperature (True/False).
15. Units of molar flowrate is \qquad
16. Molecular weight of acetic acid is
(A) $60 \mathrm{~mol} / \mathrm{g}$
(B) $40 \mathrm{~mol} / \mathrm{g}$
(C) $40 \mathrm{~g} / \mathrm{mol}$
(D) $60 \mathrm{~g} / \mathrm{mol}$
15.Write down the difference between vapor and gas.
Q. 2 Answer the following questions. (Attempt any three)
A) Write down the classification of material balance.
B) Explain the following streams: By-Pass, Purge and Recycle.
C)Write a short note on ultimate and proximate analysis of coal.
D) Write a short note on unit operation and unit process with at least five examples.
Q. 3 Final purification stage in the preparation of a pharmaceutical product A from natural sources requires centrifuging and continuous filtration as depicted in figure below. Determine the flow rate of the recycle stream in kg / h.

B) For the reaction $\mathbf{A} \rightarrow \mathbf{B}$, the process flow diagram in as shown below. The fresh feed of \mathbf{A} contains 0.5% of inert by volume. 60% conversion of A per pass is obtained. The concentration of inert going into the reactor at (1) must be held at 2% by volume. All streams are ideal gases and the process is at steady state.
(a) How many moles need to be recycled per mole of total feed to the reactor at (1)?
(b) How many moles need to be purged?
(c) What is the overall conversion of \mathbf{A} ?

OR

B) Oil seeds containing 49% oils, 40% pulp, 3% mineral salts and the rest moisture are leached with hexane as the solvent. The underflow from the leaching operation contains 25% hexane, 2.5% salts, 15% oil and 7.5% moisture. The overflow contains 25% oil which is distilled to recover the entire hexane in pure form leaving behind the oil, water and salt.The underflow is subjected to steam distillation which recovers 95% hexane. For treating 100 kg seeds, calculate the following:
(a) The kilograms of hexane used
(b) The percent of hexane used that is recovered from the underflow
(c) Percent recovery of oil
Q. 4 A) The wet-bulb and dry-bulb temperature of air are 313 K and 333 K respectively. Determine the following using psychrometric chart:
(a) The absolute humidity
(b) The percent humidity
(c) The humid volume
(d) The enthalpy of wet air

OR

(A)A triple effect evaporator (shown in the figure) is used to concentrate 1000 kg of aqueous solution from a concentration of 20% solute to 80% solute. Assuming an equal amount of vaporization in each effect, calculate the composition and weight of the solution entering the second and third effects.

B) A mixture of acetone vapour and nitrogen gas at 101.3 kPa and 295 K contains acetone vapour to the extent that it exerts a partial pressure of 15 kPa . The vapour pressure of acetone at 295 K is 26.36 kPa . Determine the following:
(a) The mole fraction of acetone in the mixture
(b) The weight fraction of acetone in the mixture
(c) The molal humidity
(d) The absolute humidity
(e) The molal saturation humidity
(f) The absolute saturation humidity
(g) The mass of acetone in $100 \mathrm{~m}^{3}$ of the mixture.

