Seat No: _____

Enrollment No: _____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Winter 2019 - 20 Examination

Sem Sub Sub	ester: 3 ject Code: 203101209/03101209 ject Name: Analysis of Mechanism and Machine Elements ructions:	Date: 06/12/2019 Time: 02:00pm to 04 Total Marks: 60	4:30pm	
1. A 2. Fi 3. M 4. St	Il questions are compulsory. gures to the right indicate full marks. Take suitable assumptions wherever necessary. art new question on new page. Objective Type Questions		(15)	
Q .1	1. A link which does not undergo any deformation while transmitting motion is	called as	(10)	
	 2. When the motion between the elements, forming a pair, is such that the constrained by itself, but by some other means, then the motion is said to be _ constrained motion. 	ained motion is not		
	3. Write Kutzbach equation to calculate movability of a planar mechanism.			
	4. Pendulum pump is obtained by fixing of a single sli	der crank chain.		
	 5. In a 4 bar linkage, if the lengths of shortest, longest and the other two links as p and q, then it would result in Grashof's linkage if	e denoted by s, l, 		
	7. When the two links have a pure rolling contact then the instantaneous centre	lies on		
	 8. The algebraic sum of the angular velocities of the two links which are connect multiplied by the radius of the pin is called as 9. Do to be a set of the pin is called as 	eted by pin joints,		
	9. Radial component of acceleration acts to the link.			
	10. Write Unwin's formula for the relation between diameter of rivet hole and the	nickness of plate.		
	11. A line joining the centres of rivets and parallel to the edge of the plate is known as			
	 12. In process, the end of the plate is pressed by a round-nosed of leak proof joint. 13. The normalization of the plate is designed for	chisel to obtain a		
	13. The parametrinet weided joint is designed for strength.			
	 equivalent twisting moment is The centre to centre distance between two consecutive rivets in a row, is call 	led		
0,2	Answer the following questions (Attempt any three)		(15)	
Q.2	A) Exploin Beam angine and Oldham's coupling with a post skotch		(13)	
	B) Find the diameter of a solid steel shaft to transmit 20000 W at 200 r n m. Th	a ultimata chaar		
	strace for the steel may be taken as 360 MPs and a factor of safety as 8. If a h	as for the steel may be taken as 260 MDs and a factor of safety as 8. If a bollow shaft is to be		
	used in place of the solid shaft, find the incide and outside diameter when the	is place of the solid shaft find the inside and outside diameter when the ratio of inside to		
	outside diameters is 0.5			
	Classify and explain in detail the types of binematic pairs			
	C) Classify and explain in detail the types of Killeniatic pairs.			
	centres of rotation.			
Q.3	A) In a crank and slotted lever quick return motion mechanism, the distance bet	ween the fixed	(07)	
	centres is 240 mm and the length of the driving crank is 120 mm. Find the ind	clination of the		
	slotted bar with the vertical in the extreme position and the time ratio of cutti	ng stroke to the		
	return stroke. If the length of the slotted bar is 450 mm, find the length of the	stroke if the line of		
	stroke passes through the extreme positions of the free end of the lever.			

B) Derive the expression for velocity and acceleration of a piston of an IC engine.

OR

B) A mechanism, as shown in figure below, has the following dimensions:

OA = 200 mm; AB = 1.5 m; BC = 600 mm; CD = 500 mm and BE = 400 mm.

- 1. Locate all the instantaneous centres.
- 2. If crank OA rotates uniformly at 120 r.p.m. clockwise, find angular velocity of the link AB and Velocity of slider D.
- Q.4 A) Explain butt joint, lap joint, corner joint, edge joint and tee joint with neat sketches. What are (07) advantages of welded joints over riveted joints?

OR

- A) The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The (07) crank is 150 mm and the connecting rod is 600 mm long. Determine :
 - 1. linear velocity and acceleration of the midpoint of the connecting rod, and
 - angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.
- **B)** In a four bar mechanism shown below, torques T_3 and T_4 have magnitudes of 30 N.m and 20 (08) N.m respectively. The link lengths are AD = 800 mm, AB = 300 mm, BC = 700 mm and CD = 400 mm. For the static equilibrium of the mechanism, determine the required input torque T_2

(08)

(08)