FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Winter 2019-20 Examination

Semester: 3

Date: 04/12/2019
Subject Code: 03191203
Time: 2:00 pm to 4:30 pm
Subject Name: Mathematics-III
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Answer the following Questions:
5. The order of the differential equation $\left(\frac{d^{10} y}{d x^{10}}\right)^{2}=\left(\frac{d^{2} y}{d x^{2}}\right)^{10}+2 x$ is \qquad -.
(a) 3
(b) 10
(c) 0
(d) 2
6. The general solution of the linear second order homogeneous differential equation with constant coefficients having roots $m_{1}=m_{2}=m$ is \qquad -
(a) $y=c_{1} e^{m_{1} x}-c_{2} e^{m_{2} x}$
(b) $y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$
(c) $y=\left(c_{1}+c_{2} x\right) e^{m x}$
(d) $y=c_{1} e^{m_{1} x}-c_{2} e^{m_{2}}$
7. A function $f(x)$ is said to be periodic function if \qquad
(a) $f(x+p)=f(x)$
(b) $f(x+p)=f(0)$
(c) $f(x+p)=f(p)$
(d) None
8. The fundamental period of $\sin x$ is \qquad
(a) p
(b) 2π
(c) 0
(d) π
9. $(1+\Delta)(1-\nabla)=$ \qquad
(a) E
(b) ∇
(c) 1
(d) 0
10. The solution of the given partial differential equation $\frac{\partial z}{\partial x}=\cos y$ is \qquad -.
11. The degree of the differential equation $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=-4$ is \qquad -
12. The rate of convergence of Newton-Raphson method is \qquad than Secant method.
13. The Gauss-elimination method for solving system of linear equations is also known as \qquad -.
14. The formula for Trapezoidal Rule is \qquad _.
15. Write formula for two point Gaussian quadrature method.
16. Prove that $1+\Delta=E$.
17. Find ordinary differential equation for $y=a x^{2}+c$.
18. The Newton-Raphson method is fail at $f^{\prime}(x)=0$. (True/False)
19. Lagrange's interpolation formula is true for equally spaced data. (True/False)
Q. 2 Answer the following questions. (Attempt any three)
A) Solve $y^{\prime \prime}+4 y^{\prime}+4 y=0, y(0)=2, y^{\prime}(0)=1$
B) Find the Fourier Series of $f(x)=\left\{\begin{array}{lr}0 ; & -\pi \leq x \leq 0 \\ x ; & 0 \leq x \leq \pi\end{array}\right.$
C) Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$ by using Lagrange's multiplier method.
D) Solve $z\left(p^{2}-q^{2}\right)=x-y$.
Q. 3 A) Find the root of $f(x)=x^{3}-4 x-9$ by using Bisection method correct up to two decimal places.
B) (1) Solve the following system of linear equations by using Gauss-Elimination method:

$$
\begin{equation*}
x+y+z=7,3 x+3 y+4 z=24,2 x+y+3 z=16 \tag{04}
\end{equation*}
$$

(2) Evaluate $\int_{0}^{1} \frac{d t}{1+t}$ by three point Gaussian formulae.

OR

B) (1) Solve the following system of linear equations by using Gauss-Seidel method:

$$
\begin{equation*}
12 x_{1}+3 x_{2}-5 x_{3}=1, x_{1}+5 x_{2}+3 x_{3}=28,3 x_{1}+7 x_{2}+13 x_{3}=76 \tag{04}
\end{equation*}
$$

correct up to 3-decimal places. Use $x_{1}=1, x_{2}=0$ and $x_{3}=1$ as the initial guess.
(2) Evaluate $\int_{0}^{3} \frac{1}{1+x} d x$, with $n=6$ using Simpson's $3 / 8$ rule.
Q. 4 A) (1) Using Gauss's forward interpolation formula, find the value of $y(32)$.

x	25	30	35	40
y	0.2707	0.3027	0.3386	0.3794

OR

A) Using Lagrange's interpolation formula, find y when $x=10$ from the following data:

x	5	6	9	11
y	12	13	14	16

B) (1) Using Taylor's series method find the value of y at $\mathrm{x}=0.1$ for the IVP
$\frac{d y}{d x}=x^{2} y-1, \quad y(0)=1$
(2) Using Euler's method, find $y(0.2)$ given $\frac{d y}{d x}=y-\frac{2 x}{y}, \quad y(0)=1$ with $\mathrm{h}=0.1$.

