Enrolment Number:	
-------------------	--

Branch: Civil Engineering

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B. TECH MIDSEM EXAMINATION

3rd SEMESTER

ACY-2022-23 (ODD SEM) Subject Name (Code): Introduction to Fluid Mechanics (203104217)

Date: 08-08-2022

Date:	08-08-2022	Time: 2:30-4:00 PM	Total Marks: 40	
Sr. No.			Mark	70
Q.1	(A) MCQ		05	
		du		
	(1) The relation between $Z = A \times (\frac{du}{dx})^n$	en shear stress Z and velocity gradient \overline{dy}	of a fluid is given	
	a) Hewtoman muld	e A and n are constants. If n < 1, what type b) Dilatant c) Pseudoplastic d) Bi	e of fluid will it be? ngham plastic	
	a) Lagrangian method	sed exclusively in fluid mechanics?	owiou woodh o do	
	c) Eulerian method	b) Both Lagrangian and Euled) Neither Lagrangian nor E		
	(3) What will be the sh	ape of the pathline for an one-dimensional arabolic c) hyperbolic d) elliptical	flow be like?	
	a) along the streamline			
	c) along the pathline	d) tangent to the pathline		
		ving is a shear-thinnning fluid?		
		Rheopectic c) Dilatant d) Pseudop	lastic	
	(B) fill in the blanks-	a) i seddop	05	
			03	
	(2) Stream line is			
	(3) Continuity equation			
	(4) Density is defined a	.s		
	(5) Specific weight is d	efined as		
Q.2	Attempt any four (Shor		12	
		en ideal fluid and real fluid.	1 200	
	(2) Give any 3 classification	ations of pressure.		
	(3) Calculate the specific which weighs 7 N.	ic weight, density and specific gravity of o	ne litre of a liquid	
		aborate capillarity effect.		
	(5) Show different types	s of flows based on Newton's law of visco	sity using diagram.	
Q.3	Attempt any two		08	
	(1) Two horizontal plate filled with oil of viscosi moved with a velocity of	es are placed 1.25 cm apart, the space betweety 14 poises. Calculate the shear stress in of 2.5 m/s.	veen them being	

Q.4	 (2) Classify types of flow. (3) A pipe contains an oil of sp. gr. 0.9. A differential manometer connected at the two points A and B shows a difference in mercury level as 15 cm. Find the difference of pressure at the two points. (A) Derive Continuity equation in 3D. (B) Prove hydrostatic law. 	
	OR	05
	(B) A rectangular plane surface is 2 m wide and 3 m deep. It lies in vertical plane in water. Determine the total pressure and position of centre of pressure on the plane surface when its upper edge is horizontal and (a) coincides with water surface, (b) 2.5 m below the free water surface.	05