\qquad
PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY
B. TECH MIDSEM EXAMINATION
$3^{\text {rd }}$ SEMESTER
ACY-2022-23 (ODD SEM)
Subject Name (Code): Discrete Mathematics(203191206)
Branch: CSE/IT
Date:09/08/2022
Time: 2:30PM to 4:00PM
Total Marks: 40

Sr.

No.
Q. 1 (A) One line Questions

1 Truth value of $\mathrm{F} \rightarrow T=$ \qquad .
$2 \mathrm{p} \wedge p=p$ is known as___Law.
$3 n(A)=2$ And $n(B)=3$ then total number of non-trivial relations from A to B is \qquad
4 If an algebraic structure satisfies associative and existence of identity property then it is known as \qquad .
5 State the Fundamental Theorem Of Arithmetic.
Q. 1 (B) Compulsory Question

1 Identity relation on any set is always reflexive[true/false]
2 Subtraction is binary operation on \mathbb{N}. [true/false]
$3 \sqrt{31}$ is \qquad number.
4 Euclidean algorithm is used to find \qquad of two numbers.
5 If the relation is reflexive then diagonal entry s of Metrix representation must be \qquad
Q. 2 Attempt any four (Short Questions)

1 Determine whether the compound propositions is satisfiable or not

$$
(p \wedge q) \vee(\neg p \wedge \neg q)
$$

$2 \mathrm{R}=\{(1,1),(1,2),(2,1),(3,2)\}$ be the relation on $\mathrm{A}=\{1,2,3\}$ then find Reflexive closure ,symmetric closure, And Transitive closure.
3 Write the converse, inverse and contrapositive of the following statement "If the weather is nice, then I'll wash the car."
4 Let R and S be relations on a set A represented by the matrices $M_{R}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ and $M_{S}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. Find the matrices representing the following relations.
(a) $R \cup S$.
(b) $R \cap S$
(c) $S \circ R$
(d) $R \circ S$
(c) $R \oplus S$

5 Show that (\mathbb{Z}, \times) is monoid.
Q. 3 Attempt any two

1 Check whether the (\mathbb{Z}, \geq) is partially ordered relation or Not.
2 By using the method of Contradiction show that $3+\sqrt{2}$ is irrational.
3 Using the concept of mathematical induction show that $1^{3}+2^{3}+3^{3}+\cdots \ldots .+n^{3}=$$\frac{(n(n+1))^{2}}{4}$
Q. 4 a) Show that $((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \rightarrow r)$ 05
is Tautology.
b) Show that $(\mathbb{R},+)$ is Abelian Group. 05
ORLet $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2)(2,4)(2,2)(2,3)(2,3),(1,1)(2,1)(4,2)\}$05
i) Draw the diagraph of the above relation
ii) Write Matrix Representation Of above relation
iii) Check that the relation is equivalence or not.

