-		
Se	at No:	

PARUL UNIVERSITY

FACULTY OF IT & COMPUTER SCIENCE

Parul Institute of Computer Application BCA/IMCA 2018-19 mid Semester Examination

Semester: 3rd

Subject Code: (05191205)

Subject Name: (Computer Oriented Numerical and Statistical Methods)

Date: (10/9/2018)

Time: (2hr)

Total Marks: 40

Instructions:

- 1. Figures to the right indicate full marks.
- 2. Make suitable assumptions wherever necessary.
- Q.1 Answer the following.
- Do as Directed:-(a)

[3]

- Define: Significant figures with one example. 1
- Gauss seidel method applicable only if it satisfies the Diagonally Dominant condition 2 (True / False)
- Rounding off the number 80.758 to one decimal gives 80.76. (T/F) 3
- Do as Directed:-(b)

[7]

- which of the following is not an error
 - a) absolute
- b) percentage
- c) truncation
- d) flow

- 2 $\nabla \Delta =$
- $(1+\Delta)(1-\nabla)=$
- An example of an Algebraic equation is:
 - a) $\tan x = e^x$

- (b) $x^3-5x+3=0$ (c) $x = \log(x)$ (d) none of these
- What is the value of 3.14159265 on rounding off up to 5 digits? 5
 - a) 3.14
- (b) 3.142
- (c) 3.1416
- (d) none

- $\Delta + \nabla =$ 6
- The root lies between _____ and ____ for equation f(x): $x^3 4x 9 = 0$ which 7 satisfies f(a).f(b) < 0.

(a)

- 1 Prove that $E = 1 + \Delta$
- Find the roots of the equation $x^3 2x 5 = 0$ using False Position method correct up to 2^{nd}

(b) Answer the following.

[6]

- Solve the following system of equations by Gauss Jordan Elimination method: x+y+z=5; 2x+3y+5z=8; 4x+5z=2
- Find f(x) using Newton's Divided Difference formula from the following table:

X	1	2	7	8
f(x)	1	5	5	4

Q.3 Attempt any TWO.

- Find the roots of the equation $x^3 4x 9 = 0$ using Bisection method correct up to [5] 4^{th} iteration.
- 2 Solve the following system of equations by using Gauss Jacobi method correct up to 2 decimal places: 5x-2y+3z = -1; -3x+9y+z = 2; 2x-y-7z = 3
- Solve the following system of equations using Partial pivoting by Gauss Elimination method: [5] 2x-y+3z=8; -x+2y+z=4; 3x+y-4z=0

Q.4 Answer the following.

[10]

(a) Find the Lagrange Interpolating Polynomial from the following data:

	12			
X	0	1	4	5
y	1	3	24	39

(b) Solve the following system of equations by using Gauss-Seidel method correct up to 2 decimal places:

$$20x+2y+z=30$$
; $x-40y+3z=-75$; $2x-y+10z=30$.

OR

(b) Using Newton's Forward Interpolation Formula, find the values of y when x = 160.

		1.00			300		11 C
у	10.63	13.03	15.04	16.81	18.42	19.90	21.27