	B. Tech. Summer 2018 - 19 Examination	
Semest	er: 7	Date: 10/05/2019
Subjec	t Code: 03101402	Time: 10.30 am to 1.00 pm
Subjec	t Name: Flight Mechanics	Total Marks: 60
Instruc	tions:	
1. All q	uestions are compulsory.	
2. Figu	es to the right indicate full marks.	
3. Mak	e suitable assumptions wherever necessary.	
4. Start	new question on new page.	
01.0	histing Turns Questions (Teach of one work)	
Q.1 U	Jecuve Type Questions - (Each of one mark)	(15)
1.	If an airplane is to remain in steady uniform fight, then	
2	about the centre of gravity must both be equal to The rotio of dynamic pressures of tail to wing is called	0 0.
2. 3	Stick fixed static margin –	
J. 1	is adjusted to ensure positive C in tail contribution	
4.	Is adjusted to ensure positive C_{m_0} in tail contribution.	
). 6	What is rolling moment due to rate of roll is colled?	
0. 7	What is rough moment due to rate of your is called?	
/. Q	What is relling moment due to rate of year is called?	
0. 0	What is the time response if the damping ratio is less than 1?	
9. 10	What is the time response if the damping ratio is cess than -1: What type of root we will get when damping ratio is greater than 1?	
11	The conditions for longitudinal stability are:	
11	dCm	
	a) $\frac{d - m}{d \alpha} > 0$ and $C_{m_0} > 0$	
	b) $\frac{dC_m}{dC_m} < 0$ and $C_m > 0$	
	$d\alpha$	
	c) $\frac{dc_m}{d\alpha} < 0$ and $C_{m_0} < 0$	
	d) $\frac{dC_m}{dc_m} > 0$ and $C_m < 0$	
10	$d\alpha$ For every lagrant situation, which of these is true to satisfy conditions of	longitudinal stability:
12	. For overall contribution, which of these is the to satisfy conditions of anter of area	
	a) Aerodynamic centre must ne in the same location of center of gra	vity
	b) Center of gravity must lie exactly above the aerodynamic center	
	c) Aerodynamic centre must lie aft of center of gravity	
	d) Center of gravity must lie aft of the aerodynamic center	
13	. The change in local flow angle with angle of attack varies along the fu	selage, what happens in the
	region between the wing's leading edge and trailing edge?	
	$a)\frac{\partial \varepsilon_u}{\partial z} > 1$	
	b) $\frac{\partial u}{\partial \alpha} < 1$	
	c) $\frac{\partial \varepsilon_u}{\partial \varepsilon_u} = 0$	
	$\partial \alpha$	
	d) Varies linearly from 0 to $(1 - \frac{\partial e_u}{\partial \alpha})$	
14	. Pitching moment about the aerodynamic centre for a reflexed trailing e	edged airfoil is
	a) Positive	
	b) Negative	
	c) Zero	
	d) Does not depend on airfoil	
15	. Condition for rudder lock	
	a) $(\delta_r)_{free} < (\delta_r)_{reg}$	
	b) $(\delta_r)_{free} > (\delta_r)_{reg}$	
	c) $(\delta_r)_{free} = (\delta_r)_{reg}$	
	d) $(\delta_r)_{frag} = (\delta_r)_{rag} = 0$	
	- (-i)jree (-i)req	

Q.2	Answer the following questions. (Attempt any three)	(15)
	A) Derive the wing alone contribution to the Pitching Moment.	
	B) Explain the contribution of Power to $C_{n_{\beta}}$.	
	C) Derive an expression for elevator control power and elevator effectiveness.	
	D) Derive the contributions of wing and fuselage to $C_{n_{\beta}}$.	
Q.3	A) Derive the rigid body equations of motion.	(07)
	B) What are the equations for the lateral stability derivatives?	(08)
	OR	

OR

B) What are the equations for the lateral stability coefficients? (08) Q.4 A) Write short notes on Stability after stall, autorotation & spin. Also write a short note on Stability with (07) Automatic control.

OR

A) Obtain the approximation for Spiral mode, Rolling motion and Dutch roll mode.	(07)
B) Consider the characteristic equation $\lambda^2 + \frac{c}{m} \lambda + \frac{k}{m} = 0$, obtain the solution of differential equation, nature	(08)
of roots and define the type of motion for different cases.	