FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester: 6

Subject Code: 03103353
Date: 04/05/2019

Subject Name: Process Equipment Design

Time: 10:30am to 1:00pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 Objective Type Questions -

1. Write down difference between Chemical Aspects and Mechanical Aspects Equipment.
2. Define : Yield Stress

3 Define: NPSH.
4 Write equation for optimum pipe size for carbon steel pipe for turbulent flow.
5 Give the full name of TEMA.
6 What is the Density of carbon dioxide gas at the discharge pressure of pipe is atmosphere, Temperature of gas is $70^{\circ} \mathrm{C}$?
7 What is Weld Joint Efficiency?
8 List out types of Heads for Unfired pressure vessels.
9 Write down IS code of Unfired pressure vessels.
10 Explain Reflux ratio for distillation.
11. Find out Design pressure if $500 \mathrm{kN} / \mathrm{m}^{2}$ is operating pressure of unfired pressure vessel.
12. Flow rate of fluid created by pump is known as Capacity of Pump. True/False
13. What is the application of blower?
14. In orifice meter minimum flow area achieved by free flowing jet is known as \qquad .
15. What is the principle of Orifice meter?
Q. 2 Answer the following questions. (Attempt Any Three):
A) Define : Stress, Stain, Material of Construction
B) What is Cavitations? How to remove cavitations in the pump?
C) Estimate the optimum pipe diameter for a flow of dry chlorine gas of $10000 \mathrm{~kg} / \mathrm{h}$ at 6 atm and 200 through carbon steel pipe.
D) List out the difference between (NPSH)A and (NPSH)R.
Q. 3 A) Describe general design steps for Distillation column by Mc Cabe method.
B) Benzene at $37^{0} \mathrm{C}$ is pumped through the system at a rate of $9.09 \mathrm{~m}^{3} / \mathrm{h}$ with the help of a centrifugal pump. The reservoir at atmospheric pressure. Pressure at the end of discharge line is 345 k pa g. The discharge head 3.05 m and pump suction head is 1.22 m above the level of liquid in reservoir. The friction loss in suction line is 3.45 kpa and that in the discharge line is 37.9 kpa . The mechanical efficiency of the pump is 0.6 .The density of benzene is $865 \mathrm{~kg} / \mathrm{m}^{3}$ and its vapour pressure at $37^{0} \mathrm{C}$ is 26.2 kpa.
Calculate: (a) (NPSH) A \quad (b) Power required by centrifugal pump.

OR

B) A process vessel is to be designed for the maximum operating pressure of $500 \mathrm{kN} / \mathrm{m}^{2}$. The vessel has the nominal diameter of 1.2 m and tangent to tangent length of 2.4 m . The vessel is made of IS: 2002-1962 Grade 2B quality steel having allowable design stress value of $118 \mathrm{MN} / \mathrm{m}^{2}$ at working temperature. The corrosion allowance is suggested to be 2 mm for the life span expected for the vessel. The vessel is to be fabricated according to class-II of Indian standard specifications which stipulate the weld joint efficiency of 0.85 .

1) What will be the standard plate thickness (Cylindrical) to fabricate this vessel?
2) If a spherical vessel having the same diameter and thickness is Fabricated the same quality steel, what maximum internal pressure the sphere will withstand safely?
Q. 4 A) Design an orifice meter based on the following data :

Name of fluid= Water,
Flow rate $=1000 \mathrm{~kg} / \mathrm{h}$,
Inside Diameter of pipe $=154 \mathrm{~mm}$ (SCH-40 pipe)
Operating temperature $=32^{\circ} \mathrm{C}$
Density of water $=995 \mathrm{~kg} / \mathrm{m}^{3}$
Viscosity of water $=0.765$ Centipoise
Manometer fluid=Mercury
Density of mercury $=13516 \mathrm{~kg} / \mathrm{m}^{3}$
Dia of Orifice $=\mathrm{d}_{0}=77 \mathrm{~mm}$
Take $\mathrm{C}_{0}=0.6055, \mathrm{~g}=9.81, \mathrm{~g}_{\mathrm{c}}=1$

OR

A) A process vessel is to be designed for the maximum operating pressure of $500 \mathrm{kN} / \mathrm{m}^{2}$. The vessel has the nominal diameter of 1.2 m and tangent to tangent length of 2.4 m . The vessel is made of IS: 2002-1962 Grade 2B quality steel having allowable design stress value of $118 \mathrm{MN} / \mathrm{m}^{2}$ at working temperature half apex angle 30°,determine the conical thickness of the head, take $\mathrm{Z}=1.35$
B) Lube oil is to be cooled from $65^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ by using cooling water in fixed tube sheet type shell and tube heat exchanger where lube oil is circulated on shell side and water is on tube side. The design data are as follows.
Lube oil flow rate $=450 \mathrm{~L} / \mathrm{min}$, Density of lube oil $=869 \mathrm{~kg} / \mathrm{m}^{3}$,
Specific heat of lube oil $=2.1413 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$, Thermal conductivity of lube oil $=0.13 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, Viscosity of lube oil $=15 \mathrm{CP}$, Cooling water inlet temp. $=35^{\circ} \mathrm{C}$, Cooling water outlet temp. $=39^{\circ} \mathrm{C}$, Specific heat of water $=4.1868 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$, Viscosity of water $=0.73 \mathrm{CP}$. Thermal conductivity of water $=0.628$ $\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$, Density of Water $=993.32 \mathrm{~kg} / \mathrm{m}^{3}$

Specification of fixed tube sheet heat exchanger:

Shell inside diameter $=418 \mathrm{~mm}$, Tube O.D. $=15.875 \mathrm{~mm}$, Type of baffle $=25 \%$ segmental, Tube I.D. $=13.3858 \mathrm{~mm}$, Baffle spacing $=83.6 \mathrm{~mm}$, Tube length $=3.048 \mathrm{~m}$,

Tube pitch=1.25do, Type of tube arrangement =Triangular, Nos. of tube side passes =4, LMTD correction factor $(\mathrm{Ft})=0.95$,
Assume Overall heat transfer Coefficient - $400 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$.
For Pt/do $=1.25$ and Triangular Pitch

No. of tube passes	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
k 1	0.319	0.24	0.17	0.074	0.0365
n 1	2.14	2.20	2.28	2.49	2.67

Calculate :(i) Number of tubes (ii) Tube side heat transfer coefficient

