B.Tech., Summer2018-19 Examination

Semester: 6
Subject Code: 03103352
Subject Name: Chemical Reaction Engineering-I

Date: 02/05/2019
Time: 10:30am to 1:00pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions.
5. List out the variables affects the rate of reaction.
6. Write down the example of Non-elementary reactions.

3 Explain 'specific reaction rate' or 'rate of reaction'.
4. Define : Auto-catalytic Reaction.
5. Define chemical kinetics.
6. For $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{R}$ reaction what is Fractional conversion for reactant A
a) $X_{A}=1-C_{A}$
b) $\mathrm{X}_{\mathrm{A}}=1-\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{Ao}}$
c) $\mathrm{X}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{Ao}}$
d) $\mathrm{X}_{\mathrm{A}}=1+\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{Ao}}$
7. Define : Space Velocity.
8. From \qquad the frequency factor does not affect the temperature sensitivity of a reaction.
9. A space velocity of $4 \mathrm{hr}^{-1}$ means that \qquad reactor volumes of feed at specified conditions are being fed into the reactor per hour.
10. Define the general unit of rate constant K for $n^{\text {th }}$ order of reaction.
11. Give Four important factors while selecting Reactor system.
12. Back mixing is allowed in MFR - State true or false.
13. Show the contacting patterns of Batch Reactor and Semi-batch reactor.
14. Write down the advantages of Batch reactor.
15. Define : Half-life Reaction.
Q. 2 Answer the following questions. (Attempt any three)
A) Derive the performance equation for Continues Stirred tank Reactor.
B) Derive the performance equation for Batch Reactor with respect to space time.
C) Develop a rate constant for Irreversible First order reaction.
D) Compare plug flow reactor and mixed flow reactor for finding the size of reactor for adiabatic operations.
Q. 3 A) Explain steps-wise procedure of Analysis for Differential Method.
B) In a homogeneous isothermal liquid polymerization, 20% of the monomer disappears in 34 minutes for initial monomer concentration of 0.04 and also for $0.8 \mathrm{~mol} / \mathrm{liter}$. What rate equation represents the disappearance of the monomer?

OR
B) Consider an Irreversible first order reaction of the type $A \rightarrow R$. It is carried out

Adiabatically in PFR, Develop an Equation with respect to Arrhenius equation in terms of volume and conversion.
Q. 4 A) For a gas reaction at 400 K , the rate is reported as $-\mathrm{dp}_{\mathrm{A}} / \mathrm{dt}=3.66 \mathrm{p}_{\mathrm{A}}{ }^{2}$, $\mathrm{atm} / \mathrm{hr}$.
a) What are the units of the rate constant?
b) What is the value of rate constant for the reaction if the rate equation is expressed as $-\mathrm{r}_{\mathrm{A}}=-(1 / \mathrm{V}) \mathrm{dN}_{\mathrm{A}} / \mathrm{dt}=\mathrm{kC}_{\mathrm{A}}{ }^{2}$, mol/liter-hr

OR

A) An aqueous feed of A and B (400 liter/min, $100 \mathrm{mmol} \mathrm{A} / \mathrm{liter}, 200 \mathrm{mmol} \mathrm{B} / \mathrm{liter})$ is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{R},-\mathrm{r}_{\mathrm{A}}=200 \mathrm{C}_{\mathrm{A}} * \mathrm{C}_{\mathrm{B}} \mathrm{mol} / \mathrm{lit} . \min$
Find the volume of reactor needed for 99.9% conversion of A to product.
B) Compare the Integral and Differential method of analysis for analyzing reaction kinetics data.

