PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Summer 2018- 19 Examination

Semester: 6 Subject Code: 03103351 Subject Name: Instrumentation & Process Control			Date: 30/04/2019 Time: 10:30 to 1:00 PM Total Marks: 60	
Instructions:				
 All questions are of Figures to the right Make suitable associated Start new question 	compulsory. t indicate full marks. umptions wherever new on new page.	cessary.		
Q.1 Objective Type	Questions.	(15)		
1. On-off control wh percent.	nich is a special case	of proportional control, has	a band width of about	
(A) 100	(B) 75	(C) 25	(D) 0	
2 "A control system i unity at the crossover (A) Bode stability3. Bode diagram are input?	s unstable, if the open frequency." This is (B) Nyquist generated from outpu	loop frequency response exh criterion. (C) Routh stability at response of the system su	ibits an amplitude ratio exceeding (D) None of these bjected to which of the following	
(A) Impulse	(B) Step	(C) Ramp	(D) Sinusoidal	
4. If response of a co(A) Proportional con(C) Proportional-inter	ntrol system is to be fr troller gral (PI) controller	ree of offset and oscillation, t (B) Proportional- (D) Proportional integr	he most suitable controller is derivative (PD) controller al-derivative (PID) controller	
5. Asymptotes are the straight lines radiating fr(A) Open loop pole(C) Centre of gravity		ng from	(B) Break in point(D) Break away point	
6. Define negative ar	d positive feedback sy	vstem.		
7. Draw generalized	diagram of feedback c	ontrol system.		
8. Define response ti	me.			
9. The overall trans	fer function for non-	interacting two tank liquid	level system having individual	
transfer function G ₁ (s	s) and $G_2(s)$ is given by	у		
10. Write the transfer	function of an ideal p	proportional plus reset control	ler.	

11. The roots of the characteristics equation lie to right of the imaginary axis of the complex plane the system is _____.

12. Float and shaft instruments are used to measure_____.

13. The offset for proportional controller having gain K for unit step change is given to first order system is given by _____.

14. Ionization and bellows gauges are used to measure ______ pressure.

15. The error required to move the pneumatic control valve from fully closed to fully open is known as

portional	error
	portional

(C) proportional variable (D) proportional control.

Q.2 Answer the following questions. (Attempt any three)

(A) Explain why two interacting capacities have more sluggish response than two equivalent but non-interacting capacities.

(B) A proportional controller having gain Kc is used to control two non-interacting liquid tank Having time constants $\tau 1 = 1$ and $\tau 2 = 0.5$ for unity feedback control system. Determine the stability of the system using Routh criterion.

(C) Discuss the effect of Integral control on the response of the controlled process.

(D) Define Overshoot, Decay ratio, response time, rise time, period of oscillation.

Q.3 (A) The overall transfer function of the control system is given by

$$\mathbf{G(S)} = \frac{16}{1.5s^2 + 2.4s + 6}$$

A step change of magnitude 6 is introduced into the system determine:

1) overshoot 2) period of oscillation 3) Natural period of oscillation 4) Ultimate value

5) Maximum value of response

- (B) Sketch the asymptotic Bode diagram of proportional Derivative controller system. (7)
 - OR

Sketch the asymptotic Bode diagram of proportional integral controller system.

O.4 (A) A proportional derivative controller having the gain Kc and the derivative time is 4 (08)used to controller two first order systems having time constant $\tau 1 = 1$ and $\tau 2 = 0.5$. If the gain

of the process is 0.5. sketch the root locus diagram for the control system. The transfer function of the measuring element is $\frac{1}{c}$.

OR

- (A) What are the types of measurement used in process control and give the name of five (8) temperature Measurement instruments and range.
- (B) Explain the working principle of radiation pyrometer and optical pyrometer. (07)

(15)

(8)