B.Tech. Summer 2018-19 Examination

Semester: 5

Subject Code: 03105303
Subject Name: Theory of Computation

Date: 18/05/2019
Time: 10:30 am to 01:00pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions - (Part 1 to 5 is MCQ, Part 6 to 10 is Fill in the blanks and Part 11 to 15
is one word answer (All are compulsory) (Each of one mark)
5. Context-free languages are closed under:
A) Union, intersection
B) Union, Kleene closure
C) Intersection, complement
D) Complement, Kleene closure
6. Minimum length of the string formed by regular expression $(a+b)^{*} a b a *(a+b)^{*}$
A) 2
B) 6
C) 4
D) 8
7. A regular grammar is
A) Туре-0
B) Type-1
C) Type-2
D) Type-3
8. Regular expression for all strings starts with $a b$ and ends with bba is.
A) aba*b*bba
B) ab(ab)*bba
C) $a b(a+b) * b b a$
D) All of the mentioned
9. In the context-free grammar below, S is the start symbol, a and b are terminals, and ϵ denotes the empty string.
$\mathrm{S} \rightarrow \mathrm{aSa}|\mathrm{bSb}| \mathrm{a}|\mathrm{b}| \epsilon$
Which of the following strings is NOT generated by the grammar?
A) aaaa
B) baba
C) abba
D) babaaabab
10. There are \qquad tuples in DFA.
11. Transition function of NDFA maps $\delta=$ \qquad
12. Grammar that produce more than one derivation tree for same sentence is \qquad
13. The language accepted by a Push down Automata is \qquad language.
14. According to Arden's theorem if every regular expression is in the form of $\mathrm{R}=\mathrm{Q}+\mathrm{RP}$ then there is a unique solution is
15. The output of the Mealy machine is determined only by its current state. It's True or False?
16. Write the condition for the left recursive grammar.
17. If $L=\left\{a^{n} b^{n} \mid n>0\right\}$ it is not a Regular Language. True or False?
18. Any regular language has an equivalent CFG. It's True or False?
19. All languages can be generated by context- free grammar. True or False?
Q. 2 Answer the following questions. (Attempt any three)
A) Convert the following CFG to CNF :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} / \varepsilon \\
& \mathrm{B} \rightarrow \mathrm{bB} / \varepsilon
\end{aligned}
$$

B) Define ARDEN's Theorem. Construct a regular expression corresponding to the automata given below using ARDEN's Theorem.

C) Convert the following Mealy machine into its equivalent Moore machine:

Present State	Next State			
	State	Output	State	Input 1
q_{0}	q_{1}	N	q_{2}	N
q_{1}	q_{1}	Y	q_{2}	N
q_{2}	q_{1}	N	q_{2}	Y

D) Using principle of Mathematical induction, Prove that for every $\mathrm{n} \geq 1$, $1+3+5+\ldots \ldots+(2 n-1)=n^{2}$
Q. 3 A) Define ambiguous grammar. Also Prove that the following language is ambiguous and convert
into unambiguous:
$\mathrm{X} \rightarrow \mathrm{X}+\mathrm{X}|\mathrm{X} * \mathrm{X}| \mathrm{a}$
B) Design a Turing Machine for the following Language:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

OR

B) Convert the grammar into Greibach Normal Form:
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{BS} / \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{SA} / \mathrm{a}$
Q. 4 A) Construct a PDA for the following Language:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \geq 0\right\}$

OR

A) 1) For the following Regular Expression draw a DFA recognizing the corresponding language. $(0+1)^{*} 10(0+1)^{*}$
2) Explain Multi-Tape Turing Machine.
B) Define language. Draw Deterministic Finite Automata for the following languages
i) L1 $=\left\{x \in(0,1)^{*} \mid x\right.$ contains101 as a substring $\}$
ii) L2 $=\left\{x \in(0,1)^{*} \mid x\right.$ contains odd number of zero $\}$
iii) L3 $=\left\{x \in(0,1)^{*} \mid x\right.$ ends with 11$\}$
iv) $L 4=\left\{x \in(0,1)^{*} \mid x\right.$ start with 001$\}$

