PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester: 4

Subject Code: 03191251
Subject Name: Numerical Analysis \& Statistical Methods

Date: 08/05/2019
Time: 02:00pm to 4:30pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions : (All are compulsory) (Each of one mark)
5. The coefficient of correlation $r=$ \qquad .
(a) $\pm \sqrt{b_{y x}+b_{x y}}$
(b) $\pm \sqrt{b_{y x} * b_{x y}}$
(c) $\pm \sqrt{b_{y x}-b_{x y}}$
(d) $b_{y x} * b_{x y}$
6. If $n=22 ; p=3 / 5$, For the binomial distribution mean, μ, is \qquad —.
(a) $\mu=13.5$
(b) $\mu=13.2$
(c) $\mu=12.7$
(d) $\mu=13.9$
7. The Mean and Variance of Poisson distribution is \qquad _.
(a) Same
(b) Distinct
(c) Zero
(d) None of these
8. Which of the following is also called an Interval Halving method?
(a) Bisection method
(b) Secant method
(c) Regula-Falsi method
(d) Newton-Raphson method
9. Newton's first divided difference $\left[x_{0}, x_{1}\right]=$ \qquad _.
(a) $y_{1}-y_{0}$
(b) $\frac{y_{1}-y_{0}}{x_{0}-x_{1}}$
(c) $\frac{y_{1}-y_{0}}{x_{1}-x_{0}}$
(d) none of these
10. The arithmetic mean is 12 and the number of observations is 20 then the sum of all the values are
\qquad _.
11. If A and B are two independent events and $P(A)=\frac{1}{3}, P(B)=\frac{3}{5}$ then $P(A \cap B)=$ \qquad .
12. What is the probability of an impossible event?
13. Write down the sample space for a family which is selected at random from a group of families having two children.
14. The Normal distribution is a \qquad shaped curve.
15. The convergence rate of Secant method is \qquad .
16. The value of $(1+\Delta)(1-\nabla)=$ \qquad -.
17. In Newton's backward interpolation formula value of $p=$ \qquad .
18. In Simpson's $1 / 3^{\text {rd }}$ rule, the number of intervals (n) should be multiple of \qquad -
19. In Euler's method, Formula for $y_{n+1}=$ \qquad
Q. 2 Answer the following questions: (Attempt any three)
A) Determine the two Regression coefficients $b_{x y}$ and $b_{y x}$ for the following data:

X	2	5	6	3	4
Y	9	6	8	5	4

B) By the method of Least Squares, find the straight line that best fits the following data:

X	0	1	2	3	4
Y	1	1.8	3.3	4.5	6.3

C) Apply Runge - Kutta fourth order method, to find an approximate value of y when $\mathrm{x}=0.2$ given that $\frac{d y}{d x}=x+y, \quad y(0)=1$. Take $\mathrm{h}=0.2$
D) Find the solution to the following system of equations up to 4 iterations using the Gauss-Seidel method.

$$
\begin{aligned}
& 12 x_{1}+3 x_{2}-5 x_{3}=1 \\
& x_{1}+5 x_{2}+3 x_{3}=28 \\
& 3 x_{1}+7 x_{2}+13 x_{3}=76 ; \text { Use } x_{1}=1, x_{2}=0 \text { and } x_{3}=1 \text { as the initial guess. }
\end{aligned}
$$

Q.3A) (i) Find Standard Deviation of 2,4,5,6,8,17.
(ii) Find the median of the following:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
f_{i}	4	8	12	20	24	15	7

B) (i) 100 electric bulbs are found to be defective in a lot of 5000 bulbs. Find the probability that at the most 3 bulbs are defective in a box of 100 bulbs.
(ii) In a school, 300 students out of 1200 students have spectacles. Five students are selected at random from the school, find the probability that 2 students out of them have spectacles.

OR

B) (i) If $P(A)=\frac{1}{3}, P\left(B^{\prime}\right)=\frac{1}{4}$, and $P(A \cap B)=\frac{1}{6^{\prime}}$, find $P(A \cup B), P\left(A^{\prime} \cap B^{\prime}\right)$ and $P\left(\frac{A^{\prime}}{B^{\prime}}\right)$.
(ii) A card is drawn from a pack of well- shuffled cards. Find the probability of the following events:
(a) The card drawn is a spade.
(b)The card drawn is a king.
(c) The card drawn is a face card.
(d)The card drawn is not a club.
Q.4A) (i) Find a root of the equation $x^{3}-x-11=0$, using the bisection method up to $3^{\text {rd }}$ iteration.
(ii) Find the root of the equation $\sin x=e^{-x}$ using Newton-Raphson method, correct up to 2 decimal places. Start with $x_{0}=0.6$

OR

A) (i) The velocity v of a particle at distance s from a point on its linear path is given by following table:

$\mathrm{s}(\mathrm{m}):$	0	2.5	5	7.5	10	12.5	15	17.5	20
$\mathrm{v}(\mathrm{m} / \mathrm{s}):$	16	19	21	22	20	17	13	11	9

Estimate a time taken by a particle to travel the distance of 20 meters, using Trapezoidal rule.
(ii) Evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ by one-point, two-point Gaussian Quadrature formulae.
B) (i) Using Newton's forward interpolation formula evaluate $f(5)$ for the following data :

x	4	6	8	10
y	1	3	8	16

(ii) Find f(3) by using Lagrange's formula for the following data:

$x:$	0	1	2	5
$f(x):$	2	3	12	147

