Seat No:

PARUL UNIVERSITY **FACULTY OF ENGINEERING & TECHNOLOGY** B.Tech. Summer 2018 - 19 Examination

Semester: 4 Subject Code: 03191251 Subject Name: Numerical Analysis & Statistical Methods

Date: 08/05/2019 Time: 02:00pm to 4:30pm **Total Marks: 60**

(15)

Enrollment No:

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Q.1 Objective Type Questions : (All are compulsory) (Each of one mark)

1. The coefficient of correlation r =_____

(a)
$$\pm \sqrt{b_{yx} + b_{xy}}$$
 (b) $\pm \sqrt{b_{yx} * b_{xy}}$ (c) $\pm \sqrt{b_{yx} - b_{xy}}$ (d) $b_{yx} * b_{xy}$

- If n = 22; p = 3/5, For the binomial distribution mean, μ , is _____ 2. (d) $\mu = 13.9$ (a) $\mu = 13.5$ (b) $\mu = 13.2$ (c) $\mu = 12.7$
- The Mean and Variance of Poisson distribution is _____. 3. (a) Same (b) Distinct (c) Zero (d) None of these
- 4. Which of the following is also called an Interval Halving method? (a) Bisection method (b) Secant method (c) Regula-Falsi method (d) Newton-Raphson method
- 5. Newton's first divided difference $[x_0, x_1] =$ _____.

(a)
$$y_1 - y_0$$
 (b) $\frac{y_1 - y_0}{x_0 - x_1}$ (c) $\frac{y_1 - y_0}{x_1 - x_0}$ (d) none of these

- The arithmetic mean is 12 and the number of observations is 20 then the sum of all the values are 6.
- If A and B are two independent events and $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{5}$ then $P(A \cap B) =$ _____. 7.
- What is the probability of an impossible event? 8.
- Write down the sample space for a family which is selected at random from a group of families 9. having two children.
- **10.** The Normal distribution is a ______ shaped curve.
- 11. The convergence rate of Secant method is _____.
- **12.** The value of $(1 + \Delta)(1 \nabla) =$ _____.
- **13.** In Newton's backward interpolation formula value of p =

14. In Simpson's $1/3^{rd}$ rule, the number of intervals (n) should be multiple of

15. In Euler's method, Formula for $y_{n+1} =$ _____

Q.2 Answer the following questions: (Attempt any three)

A) Determine the two Regression coefficients b_{xy} and b_{yx} for the following data:

Х	2	5	6	3	4
Y	9	6	8	5	4

B) By the method of Least Squares, find the straight line that best fits the following data:

Х	0	1	2	3	4
Y	1	1.8	3.3	4.5	6.3

Apply Runge – Kutta fourth order method, to find an approximate value of y when x = 0.2 given C) that

$$t\frac{dy}{dx} = x + y, \quad y(0) = 1.$$
 Take h=0.2

(15)

D) Find the solution to the following system of equations up to 4 iterations using the Gauss-Seidel method.

$$12x_1 + 3x_2 - 5x_3 = 1$$
$$x_1 + 5x_2 + 3x_3 = 28$$

 $3x_1 + 7x_2 + 13x_3 = 76$; Use $x_1 = 1, x_2 = 0$ and $x_3 = 1$ as the initial guess.

- **Q.3A)** (i) Find Standard Deviation of 2,4,5,6,8,17.
 - (ii) Find the median of the following:

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
f_i	4	8	12	20	24	15	7

- B) (i) 100 electric bulbs are found to be defective in a lot of 5000 bulbs. Find the probability that at the (04) most 3 bulbs are defective in a box of 100 bulbs.
 - (ii) In a school, 300 students out of 1200 students have spectacles. Five students are selected at random from the school, find the probability that 2 students out of them have spectacles. (04)

OR

B) (i) If
$$P(A) = \frac{1}{3}$$
, $P(B') = \frac{1}{4}$, and $P(A \cap B) = \frac{1}{6}$, find $P(A \cup B)$, $P(A' \cap B')$ and $P(\frac{A'}{B'})$. (04)

- (ii) A card is drawn from a pack of well- shuffled cards. Find the probability of the following events: (04)
- (a) The card drawn is a spade. (b) The card drawn is a king.
- (c) The card drawn is a face card. (d) The card drawn is not a club.

Q.4A) (i) Find a root of the equation $x^3 - x - 11 = 0$, using the bisection method up to 3^{rd} iteration. (03)

(ii) Find the root of the equation $sinx = e^{-x}$ using Newton-Raphson method, correct up to 2 (04) decimal places. Start with $x_0 = 0.6$

OR

A) (i) The velocity v of a particle at distance s from a point on its linear path is given by following (03) table:

ſ	s(m):	0	2.5	5	7.5	10	12.5	15	17.5	20
-	v(m/s):	16	19	21	22	20	17	13	11	9

Estimate a time taken by a particle to travel the distance of 20 meters, using Trapezoidal rule.

(ii) Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by one-point, two-point Gaussian Quadrature formulae. (04)

B) (i) Using Newton's forward interpolation formula evaluate f(5) for the following data : (04)

X	4	6	8	10
У	1	3	8	16

(ii) Find f(3) by using Lagrange's formula for the following data:

x:	0	1	2	5
f(x):	2	3	12	147

(04)

(03)

(04)