PARUL UNIVERSITY

FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester:4/5
Date:01/05/2019
Subject Code: 03107254
Time:02:00pm to 04:30pm
Subject Name: Integrated Circuits and Applications
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Do as Directed.

Multiple choice Questions (1 to 5).

1. Find the output voltage of an ideal op-amp. If V1 and V2 are the two input voltages
a) $V_{0}=V_{1}-V_{2}$
b) $\mathrm{V}_{\mathrm{O}}=\mathrm{A} \times\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$
c) $\mathrm{V}_{\mathrm{O}}=\mathrm{A} \times\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
d) $V_{O}=V_{1} \times V_{2}$
2. What does the discharge transistor do in the 555 timer circuit?
a) charge the external capacitor to stop the timing
b) charge the external capacitor to start the timing over again
c) discharge the external capacitor to stop the timing
d) discharge the external capacitor to start the timing over again
3. Find the unity gain bandwidth for voltage series feedback amplifier?
a) $\mathrm{UBG}=\mathrm{Af}_{0}$
b) $\mathrm{UBG}=\mathrm{Af}_{\mathrm{F}}$
c) $\mathrm{UBG}=\mathrm{Af}_{\mathrm{o}} \mathrm{f}_{\mathrm{F}}$
d) $\mathrm{UBG}=\mathrm{A}_{\mathrm{F}} \mathrm{f}_{0}$
4. The two input terminals of an op amp are labeled as
a) High and low
b) Inverting and non inverting
c) Positive and negative
d) Differential and non differential
5. A certain noninverting amplifier has R_{i} of $1 \mathrm{k} \Omega$ and R_{f} of $100 \mathrm{k} \Omega$. The closed-loop voltage gain is
a) 100,001
b) 10001
c) 1001
d) 101

Fill in the blanks (6 to 10).

6. For Differentiator, if Square wave is input signal than \qquad _wave will be output signal.
7. A voltage follower has \qquad voltage gain.
8. For pin diagram of IC741, \qquad will be applied on pin number 7 .
9. If Vin > + Vref for inverting comparator than \qquad will be the output voltage.
10. If $\mathrm{A}_{\mathrm{DM}}=3500$ and $\mathrm{A}_{\mathrm{CM}}=0.35$, the CMRR is \qquad _.

Define the following terms (11 to 15).

11. Input Offset Voltages
12. Input Capacitance
13. Slew Rate
14. CMRR
15. Offset Voltage Adjustment Range
Q. 2 Answer the following questions. (Attempt any three)
A) List out characteristics of Ideal Op-Amp.
B) Explain the inverting Comparator circuit with waveform.
C) Explain the integrator circuit of Op-Amp with proper waveform.
D) Explain Monostable multivibrator operation for 555 IC.
Q. 3 A) Explain Low pass filter using op-amp in detail.
B) Derive the expression of Summing and averaging for non-inverting configuration.

OR

B) Explain Schmitt trigger circuit with waveform and derive the equation of V_{hy}.
Q. 4 A) Derive the expression of closed loop voltage gain for inverting amplifier with necessary diagram.

OR

A) Explain in detail : Voltage regulators
B) The 741 Op -amp having the following parameters as a non-inverting amplifier with $\mathrm{R}_{1}=1 \mathrm{~K} \Omega$ and $R_{F}=10 \mathrm{~K} \Omega$. $A=200,000, R_{i}=2 \mathrm{M} \Omega, R o=75 \Omega$ and $f_{0}=5 \mathrm{~Hz}$. Supply voltage $= \pm 15 \mathrm{~V}$ and Output voltage swing $= \pm 13 \mathrm{~V}$. Compute the values of $\mathrm{A}_{\mathrm{f}}, \mathrm{R}_{\mathrm{if}}, \mathrm{R}_{\mathrm{of}}, \mathrm{F}_{\mathrm{f}}$ and $\mathrm{V}_{\text {oot }}$.

