Seat No:	Enrollment No:

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY

B.Tech. Summer 2018 - 19 Examination

Semester:4/5 Date:01/05/2019

Subject Code: 03107254 Time:02:00pm to 04:30pm

Subject Name: Integrated Circuits and Applications Total Marks: 60

Instructions:

- 1. All questions are compulsory.
- 2. Figures to the right indicate full marks.
- 3. Make suitable assumptions wherever necessary.
- 4. Start new question on new page.

Do as Directed. (15)

Multiple choice Questions (1 to 5).

- 1. Find the output voltage of an ideal op-amp. If V1 and V2 are the two input voltages
 - a) $V_0 = V_1 V_2$
 - b) $V_0 = A \times (V_1 V_2)$
 - c) $V_0 = A \times (V_1 + V_2)$
 - d) $V_0 = V_1 \times V_2$
- 2. What does the discharge transistor do in the 555 timer circuit?
 - a) charge the external capacitor to stop the timing
 - b) charge the external capacitor to start the timing over again
 - c) discharge the external capacitor to stop the timing
 - d) discharge the external capacitor to start the timing over again
- 3. Find the unity gain bandwidth for voltage series feedback amplifier?
 - a) $UBG = Af_0$
 - b) $UBG = Af_F$
 - c) $UBG = Af_o f_F$
 - d) $UBG = A_F f_o$
- 4. The two input terminals of an op amp are labeled as
 - a) High and low
 - b) Inverting and non inverting
 - c) Positive and negative
 - d) Differential and non differential
- 5. A certain noninverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . The closed-loop voltage gain is
 - a) 100,001
 - b) 10001
 - c) 1001
 - d) 101

Fill in the blanks (6 to 10).

6. For Differentiator, if Square wave is input signal than _____wave will be output signal.

	7. A voltage follower has voltage gain.	
	8. For pin diagram of IC741, will be applied on pin number 7.	
	9. If Vin > + Vref for inverting comparator than will be the output voltage.	
	10. If $A_{DM} = 3500$ and $A_{CM} = 0.35$, the CMRR is	
	Define the following terms (11 to 15).	
	11. Input Offset Voltages	
	12. Input Capacitance	
	13. Slew Rate	
	14. CMRR	
	15. Offset Voltage Adjustment Range	
Q.2	Answer the following questions. (Attempt any three)	(15)
	A) List out characteristics of Ideal Op-Amp.	
	B) Explain the inverting Comparator circuit with waveform.	
	C) Explain the integrator circuit of Op-Amp with proper waveform.	
	D) Explain Monostable multivibrator operation for 555 IC.	
Q.3	A) Explain Low pass filter using op-amp in detail.	(07)
	B) Derive the expression of Summing and averaging for non-inverting configuration.	(08)
	OR	
	B) Explain Schmitt trigger circuit with waveform and derive the equation of $V_{\rm hy}$.	(08)
Q.4	A) Derive the expression of closed loop voltage gain for inverting amplifier with necessary diagram.	(07)
	OR	
	A) Explain in detail : Voltage regulators	(07)
	B) The 741 Op-amp having the following parameters as a non-inverting amplifier with R_1 = 1K Ω	(08)
	and R_F = 10K $\Omega.$ A = 200,000, R_i = 2M $\Omega,$ Ro = 75 Ω and f_o = 5Hz. Supply voltage = \pm 15V and	
	Output voltage swing = ± 13 V. Compute the values of A_f , R_{if} , R_{of} , F_f and V_{oot} .	