Seat No: _____

Enrollment No: __ PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B Tech. Summer 2018 - 19 Examination

		B.Tech. Summer 2018 - 19 Examination						
	Sem Sub	nester: 3 Date: 30/05/2019 nject Code: 03191203 Time: 02:00pm to 04:30pm Total Markay 60						
-	Sub	oject Name: Mathematics-III Total Marks: 60	—					
	Instructions:							
	1. A 2. Fi	igures to the right indicate full marks.						
	3. M	Take suitable assumptions wherever necessary.						
	4. St	tart new question on new page.						
Q.1	A.	Choose the correct answer	(15)					
	1.	If $y_1 = e^x$ any $y_2 = e^{-x}$, the Wronskian $W(y_1, y_2)$ is						
		(a) 1 (b) 0 (c) -2 (d) e^{2x} $\partial^2 u = \partial^2 u$						
	2.	Partial differential equation $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial y^2}$						
		(a) Laplace equation (b)Wave equation (c) One dimensional wave equation (d) none of these						
	3.	The non-linear equation $f(x) = x^3 + 4x^2 - 10$ has at least on real root in the interval						
		(a) $[0,1]$ (b) $[1,2]$ (c) $[-1,0]$ (d) none of these						
	4.	While evaluating a definite integral by Trapezoidal rule, the accuracy can be increased by taking						
		(a) large number of sub-intervals (b) small number of sub-intervals						
		(c) odd number of sub-intervals (d) none						
	5.	$(1 + \Delta)(1 - \nabla) =$						
		(a) 0 (b) $\Delta \nabla$ (c) ∇ (d) 1						
	B.	Fill in the blanks with appropriate answer						
	1.	The value of $\cos n\pi$ is						
	2.	The general solution of $y'' + 4y$ is						
	3.	$\Delta \nabla = $						
	4.	The order and degree of the partial differential equation $\left(\frac{\partial^3 u}{\partial x^3}\right)^4 + 2\left(\frac{\partial u}{\partial y}\right)^5 = u$ is and						
	5.	The convergence rate of Newton Raphson method is						
	C.	State True or False						
	1.	Gauss Jacobi method converges faster than Gauss Seidel method.						
	2. $f(x) = x^2 - x$ is an odd function.							
	3.	The solution of the partial differential equation $p + q = 1$ is $z = ax + (1 - a)y$						
	4.	If $f(x) = x^3$ in (-1,1), then the Fourier coefficient <i>a</i> is 0.						
	5	The Gaussian Quadrature formula for n points gives the exact solution for polynomials up to degree $2n$ -						
	0.	1.						
Q.2	An	Answer the following questions (Attempt any three) (15)						
	A)	Evaluate $\int_{1+x}^{3} \frac{1}{1+x} dx$, with $n = 6$ using Simpson's 3/8 rule.						
	R)	0^{-1}						
	D)	decimal places $27x + 6y - z = 85$, $x + y + 54z = 110$, $6x + 15y + 2z = 72$						
	C)	Compute $f(3)$ by using Lagrange's interpolation formula from the following data:						
		y 2 3 12 147						
	D)	Obtain the Fourier cosine series for the function $f(x) = e^x$ in the range (0, 1).						

Q.3
A) Find the Fourier series of
$$f(x) = \begin{cases} -x - \pi, & -\pi \le x < 0 \\ x + \pi, & 0 \le x \le \pi \end{cases}$$
(07)

B) (i) Use Runge-Kutta fourth order method to find the approximate value of y(0.2) given that $\frac{dy}{dx} = x + y$ and y(0)=1 and h=0.2

- that $\frac{dy}{dx} = x + y$ and y(0)=1 and h=0.2
- (ii) Using Newton's forward difference interpolation formula to find approximate value of f(1.3) from the following data:

x	1	2	3	4					
f(x)	1.1	4.2	9.3	16.4					
OP									

B) (i) Solve the partial differential equation
$$\frac{\partial^2 u}{\partial x \partial y} = \cos x \cos y$$
.

(ii) Solve
$$(D^2 + 10DD' + 25D'^2) = e^{3x+2y}$$
 (04)

Q.4 A) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$, given $u(x,0) = 6e^{-3x}$. (07)

OR

A) Solve the Cauchy-Euler differential equation $x^2 y'' - 3xy' + 4y = x^2$, given that $y(1) = 1$, $y'(1) = 0$.	(07)
B) (i) Solve the following differential equations using Undetermined coefficient method	(05)

$$y'' - 3y' + 2y = e^{x}$$
(03)

(ii) Solve the partial differential equations $p^2 + q^2 = 2pq$

(04)

(04)

(04)