FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester: 3

Subject Code: 03191203
Subject Name: Mathematics-III

Date: 30/05/2019
Time: 02:00pm to 04:30pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.

Q. 1 A. Choose the correct answer

1. If $y_{1}=e^{x}$ any $y_{2}=e^{-x}$, the Wronskian $W\left(y_{1}, y_{2}\right)$ is
(a) 1
(b) 0
(c) -2
(d) $e^{2 x}$
2. Partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}=9 \frac{\partial^{2} u}{\partial y^{2}}$
(a) Laplace equation
(b)Wave equation
(c) One dimensional wave equation
(d) none of these
3. The non-linear equation $f(x)=x^{3}+4 x^{2}-10$ has atleast on real root in the interval
(a) $[0,1]$
(b) $[1,2]$
(c) $[-1,0]$
(d) none of these
4. While evaluating a definite integral by Trapezoidal rule, the accuracy can be increased by taking
\qquad —.
(a) large number of sub-intervals
(b) small number of sub-intervals
(c) odd number of sub-intervals
(d) none
5. $(1+\Delta)(1-\nabla)=$
(a) 0
(b) $\Delta \nabla$
(c) ∇
(d) 1
B. Fill in the blanks with appropriate answer
6. The value of $\cos n \pi$ is \qquad .
7. The general solution of $y^{\prime \prime}+4 y$ is \qquad .
8. $\Delta \nabla=$ \qquad
9. The order and degree of the partial differential equation $\left(\frac{\partial^{3} u}{\partial x^{3}}\right)^{4}+2\left(\frac{\partial u}{\partial y}\right)^{5}=u$ is \qquad and
10. The convergence rate of Newton Raphson method is \qquad -

C. State True or False

1. Gauss Jacobi method converges faster than Gauss Seidel method.
2. $f(x)=x^{2}-x$ is an odd function.
3. The solution of the partial differential equation $p+q=1$ is $z=a x+(1-a) y$
4. If $f(x)=x^{3}$ in $(-1,1)$, then the Fourier coefficient a_{n} is 0 .
5. The Gaussian Quadrature formula for n points gives the exact solution for polynomials up to degree 2 n 1.

Q. 2 Answer the following questions (Attempt any three)

A) Evaluate $\int_{0}^{3} \frac{1}{1+x} d x$, with $n=6$ using Simpson's $3 / 8$ rule.
B) Find the solution to the following system of equations using the Gauss-Seidel method correct up to 3 decimal places $27 x+6 y-z=85, x+y+54 z=110,6 x+15 y+2 z=72$
C) Compute $f(3)$ by using Lagrange's interpolation formula from the following data:

x	0	1	2	5
y	2	3	12	147

D) Obtain the Fourier cosine series for the function $f(x)=e^{x}$ in the range $(0,1)$.
Q. 3 A) Find the Fourier series of $f(x)=\left\{\begin{array}{ll}-x-\pi, & -\pi \leq x<0 \\ x+\pi, & 0 \leq x \leq \pi\end{array}\right.$.
B) (i) Use Runge-Kutta fourth order method to find the approximate value of $\mathrm{y}(0.2)$ given that $\frac{d y}{d x}=x+y$ and $\mathrm{y}(0)=1$ and $\mathrm{h}=0.2$
(ii) Using Newton's forward difference interpolation formula to find approximate value of $f(1.3)$ from the following data:

x	1	2	3	4
$f(x)$	1.1	4.2	9.3	16.4

OR
B) (i) Solve the partial differential equation $\frac{\partial^{2} u}{\partial x \partial y}=\cos x \cos y$.
(ii) Solve $\left(D^{2}+10 D D^{\prime}+25 D^{\prime 2}\right)=e^{3 x+2 y}$
Q. 4 A) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, given $u(x, 0)=6 e^{-3 x}$.

OR

A) Solve the Cauchy- Euler differential equation $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2}$, given that $y(1)=1, y^{\prime}(1)=0$.
B) (i) Solve the following differential equations using Undetermined coefficient method

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}
$$

(ii) Solve the partial differential equations $p^{2}+q^{2}=2 p q$

