Seat No: _____

Enrollment No: _____ PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Summer 2018 – 19 Examination

Sem Sub Sub	ester: 3 ject Code: 03191201 ject Name: Mathematics 3	Date: 30/05/2019 Time: 02:00 pm to 04:30 pm Total Marks: 60
Inst 1. A 2. Fi 3. M 4. St	ructions: Il questions are compulsory. gures to the right indicate full marks. Take suitable assumptions wherever necessary. art new question on new page.	
Q.1	A) Choose the correct answer (Each question carries ONE mark) 1. If $y_1 = x$, $y_2 = 1$; The Wronskian $W(y_1, y_2)$ is (a) -1 (b) 1 (c) x (d) 0 2. An example for a function which neither even nor odd (a) x (b) sin x (c) cos x (d)none of these 3. Inverse Laplace Transform of $\frac{2!}{1000}$ is	(15)
	(a) $2te^{2t}$ (b) t^2e^{-2t} (c) t^2e^{2t} (d) none of these 4. Laplace Transform of $\sinh t$ is (a) $\frac{1}{s^2+1}$ (b) $\frac{1}{s^2-1}$ (c) $\frac{s}{s^2+1}$ (d) $\frac{s}{s^2-1}$ 5. The partial differential equation $5\frac{\partial^2 z}{\partial x^2} + 6\frac{\partial^2 z}{\partial y^2} = xy$ is classified as (a) elliptic (b) parabolic (c) hyperbolic (d) none of the above B) Fill in blanks' (Each question carries ONE mark) 1. The general solution of $y'' - y' = 0$ is 2. Solution of P.D.E. $pq = 1$ is 3. Inverse Laplace transform of $F(s) = e^{-as}$ is 4. If the Fourier Integral $f(x) = \int_{0}^{\infty} (A(w)\cos wx + B(w)\sin wx)dw$, form	mla of $B(w)$ is
Q.2	 5. For the periodic function f (x) = k, -π ≤ x ≤ π, b_n = 6. Z[1] = C) True or False (Each question carries ONE mark) 1. Lagrange's linear equation is of the form Pp + Qq = R 2. General solution of the homogeneous differential equation with constant or roots are m = 1 and 2 is y_c = c₁e^x + c₂e^{2x}. 3. Inverse Laplace Transform of F(s) = e^{-as} is u(t - a). 4. Even function is symmetric about Origin. Answer the following questions. (Attempt any three) A) Using method of Variation of Parameter, Solve y" + y = tan x B) Find the Fourier series of f(x) = π x in the interval(-π, π). C) Using Laplace Transformation, solve the initial value problem y" + y = sin 2t; y(0) = 2; y'(0) = 1 D) Solve the Cauchy- Euler differential equation x²y" + 3xy' + y = 6 	coefficients whose (15)

Q.3 A) (I) Solve y'''-y'' + 100y'-100y = 0

(II) Find the half-range Cosine Series of
$$f(x) = x^2$$
 in the interval $(0, \pi)$ (04)

B) (I) Find the Fourier Sine Integral of $f(x) = e^{-bx}$ (04)

(II) Find the Fourier Series of $f(x) = \frac{1}{2}(\pi - x)$ in the interval (0,2 π) (04)

OR

B) (I) Find
$$L^{-1}\left(\frac{2s+3}{s^2+9}\right)$$
. (04)

(II) Evaluate
$$L(t^2 \sin 2t)$$
 (04)

Q.4 A) Solve the differential equation using Z transform $u_{n+1} + u_n = 1$, $u_0 = 0$

OR

- A) Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ where, the boundary (07) condition are u(0,t) = u(L, t) = 0 t > 0 and the initial condition is u(x,0) = x, L being the length (0 < x < L).
- B) (I) Solve $(D^2 + 10DD' + 25D'^2) = e^{3x+2y}$ (04)

(II) Solve
$$p + q = sinx + siny$$
 (04)

(03)

(07)