FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester: 3

Subject Code: 03191201
Time: 02:00 pm to 04:30 pm
Subject Name: Mathematics 3

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 A) Choose the correct answer (Each question carries ONE mark)
5. If $y_{1}=x, y_{2}=1$; The Wronskian $W\left(y_{1}, y_{2}\right)$ is
(a) -1
(b) 1
(c) x
(d) 0
6. An example for a function which neither even nor odd
(a) x
(b) $\sin x$
(c) $\cos x$
(d)none of these
7. Inverse Laplace Transform of $\frac{2!}{(s-2)^{2}}$ is
(a) $2 t e^{2 t}$
(b) $t^{2} e^{-2 t}$
(c) $t^{2} e^{2 t}$
(d) none of these
8. Laplace Transform of $\sinh t$ is
(a) $\frac{1}{s^{2}+1}$
(b) $\frac{1}{s^{2}-1}$
(c) $\frac{s}{s^{2}+1}$
(d) $\frac{s}{s^{2}-1}$
9. The partial differential equation $5 \frac{\partial^{2} z}{\partial x^{2}}+6 \frac{\partial^{2} z}{\partial y^{2}}=x y$ is classified as
(a) elliptic (b) parabolic (c) hyperbolic (d) none of the above
B) Fill in blanks`(Each question carries ONE mark)
10. The general solution of $y^{\prime \prime}-y^{\prime}=0$ is \qquad -
11. Solution of P.D.E. $p q=1$ is \qquad -.
12. Inverse Laplace transform of $F(s)=e^{-a s}$ is \qquad -
13. If the Fourier Integral $f(x)=\int_{0}^{\infty}(A(w) \cos w x+B(w) \sin w x) d w$, formula of $B(w)$ is \qquad -
14. For the periodic function $f(x)=k,-\pi \leq x \leq \pi, b_{n}=$ \qquad .
15. $Z[1]=$ \qquad .
C) True or False (Each question carries ONE mark)
16. Lagrange's linear equation is of the form $P p+Q q=R$
17. General solution of the homogeneous differential equation with constant coefficients whose roots are $m=1$ and 2 is $y_{c}=c_{1} e^{x}+c_{2} e^{2 x}$.
18. Inverse Laplace Transform of $F(s)=e^{-a s}$ is $u(t-a)$.
19. Even function is symmetric about Origin.
Q. 2 Answer the following questions. (Attempt any three)
A) Using method of Variation of Parameter, Solve $y^{\prime \prime}+y=\tan x$
B) Find the Fourier series of $f(x)=\pi x$ in the interval $(-\pi, \pi)$.
C) Using Laplace Transformation, solve the initial value problem

$$
y^{\prime \prime}+y=\sin 2 t ; y(0)=2 ; y^{\prime}(0)=1
$$

D) Solve the Cauchy- Euler differential equation $x^{2} y^{\prime \prime}+3 x y^{\prime}+y=6$
Q. 3 A) (I) Solve $y^{\prime \prime \prime}-y^{\prime \prime}+100 y^{\prime}-100 \mathrm{y}=0$
(II) Find the half-range Cosine Series of $f(x)=x^{2}$ in the interval $(0, \pi)$
B) (I) Find the Fourier Sine Integral of $f(x)=e^{-b x}$
(II) Find the Fourier Series of $f(x)=\frac{1}{2}(\pi-x)$ in the interval $(0,2 \pi)$

OR

B) (I) Find $L^{-1}\left(\frac{2 s+3}{s^{2}+9}\right)$.
(II) Evaluate $L\left(t^{2} \sin 2 t\right)$
Q. 4 A) Solve the differential equation using Z transform

$$
u_{n+1}+u_{n}=1, \quad u_{0}=0
$$

OR
A) Determine the solution of one dimensional heat equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ where, the boundary
condition are $u(0, t)=u(L, t)=0 t>0$ and the initial condition is $u(x, 0)=x, L$ being the length $(0<x<L)$.
B) (I) Solve $\left(D^{2}+10 D D^{\prime}+25 D^{\prime 2}\right)=e^{3 x+2 y}$
(II) Solve $p+q=\sin x+\sin y$

