\qquad
PARUL UNIVERSITY
FACULTY OF ENGINEERING \& TECHNOLOGY
B.Tech. Summer 2018-19 Examination

Semester: 3
Subject Code: 03109201
Subject Name: Engineering Thermodynamics
Date: 27/05/2019
Time: 02:00pm to 04:30pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Answer the following short questions, filling the blanks and multiple choice questions
5. Product of mass and specific heat of a substance is termed as \qquad .
6. When a solid substance is converted to gaseous form, the process is called \qquad .
7. Volume is an \qquad property.
8. Heat transfer is a \qquad function.
9. Helmholtz function F \qquad -.
10. What is a pure substance
11. Show that the COP of heat pump is greater than the COP of refrigerator by unity.
12. Write down Van der wall's equation of state.
13. Explain concept of available Energy and unavailable Energy.
14. Explain concept of Quasi-static process.
15. A process, in which the temperature of the working substance remains constant during its expansion or compression, is called.
A) isothermal process
B) hyperbolic process
C) adiabatic process
D) polytropic process
16. For a reversible adiabatic process, change in entropy is \qquad
(a) zero (b)maximum (c)minimum (d)unity
13)second law of thermodynamics forms the basis of \qquad .measurement
(a) Pressure (b) Temperature(c) Entropy (d) Work.
17. The entropy of water at $0^{\circ} \mathrm{C}$ is assumed to be
(a) 1 (b) 0 (c) -1 (d) 2
15)Which of the following is not a property of the system
(a)Temperature (b)Pressure(c) Specific volume (d)Heat
Q. 2 Answer the following questions. (Attempt any three)
A) 80 kg of water at $100^{\circ} \mathrm{C}$ are mixed with 50 kg of water at $60^{\circ} \mathrm{C}$, while the temperature of the surroundings is $15^{\circ} \mathrm{C}$. Determine the decrease in available energy due to mixing.
B) What are the Maxwell's relations.
C) Write steady flow energy equation in case of boiler and turbine.
D) Differentiate between Intensive and Extensive properties of system.
Q. 3 A) A heat engine receives reversibly $420 \mathrm{~kJ} /$ cycle of heat from a source at $327^{\circ} \mathrm{C}$, and rejects heat reversibly to a sink at $27^{\circ} \mathrm{C}$. There are no other heat transfers. For each of the three hypothetical amounts of heat rejected, in (a), (b), and (c) below, compute the cyclic integral of dQ /T. From these results show that which case is irreversible, which case is reversible, and which case is impossible:
(a) $210 \mathrm{~kJ} /$ cycle rejected
(b) $105 \mathrm{~kJ} /$ cycle rejected
(c) $315 \mathrm{~kJ} /$ cycle rejected
B) Prove the equivalency of Kelvin-Plank and Clausius statements..

OR
B) Derive both Tds Equations. a reservoir at $60^{\circ} \mathrm{C}$. The heat pump is driven by a reversible heat engine which takes heat from a reservoir at $840^{\circ} \mathrm{C}$ and rejects heat to a reservoir at $60^{\circ} \mathrm{C}$. The reversible heat engine also drives a machine that absorbs 30 kW . If the heat pump extracts $17 \mathrm{~kJ} / \mathrm{s}$ from the $5^{\circ} \mathrm{C}$ reservoir, determine (a) The rate of heat supply from the $840^{\circ} \mathrm{C}$ source (b) The rate of heat rejection to the $60^{\circ} \mathrm{C}$ sink..

OR

A) A nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is $3000 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is $60 \mathrm{~m} / \mathrm{s}$. At the discharge end, the enthalpy is $2762 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it. (a) Find the velocity at exist from the nozzle. (b) If the inlet area is $0.1 \mathrm{~m}^{2}$ and the specific volume at inlet is $0.187 \mathrm{~m}^{3} / \mathrm{kg}$, find the mass flow rate. (c) If the specific volume at the nozzle exit is $0.498 \mathrm{~m}^{3} / \mathrm{kg}$, find the exit area of the nozzle.
B) 2 kg of water at $80^{\circ} \mathrm{C}$ are mixed adiabatically with 3 kg of water at $30^{\circ} \mathrm{C}$ in a constant pressure process of 1 atmosphere. Find the increase in the entropy of the total mass of water due to the mixing process (Cp of water $=4.187 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$).

