Enrollment No: ____

PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech. Summer 2018 - 19 Examination

Semester: 3		Date: 29/05/2019 Time: 02:00pmto 04:00pm	
Subject Code: 03105201			
Sub	ject Name: Digital Logic Design	Total Marks: 60	
	ructions:		
1. A	in questions are compulsory.		
2. F	Iske suitable assumptions wherever necessary		
4 S	tart new question on new page		
1. 5	ant new question on new page.		
Q.1	Objective Type Questions: (All are compulsory) (Each of one ma	ark) (15)	
	1. Any negative number is recognized by its		
	a) MSB b) LSB c) Bits d)	Nibble	
	2. The quantity of word is		
	a) 16 bits b) 32 bits c) 64 bits d)	8 bits	
	3. 2's complement of 11001011 is		
	a) 01010111 b) 11010100 c) 00110101 d)) 11100010	
	4. A logic circuit that provides a HIGH output for both inputs HIG	GH or both inputs LOW is	
	a) Ex-NOR gate b) OR gate c) Ex-OR gate d	l) NAND gate	
	5. The Boolean algebra is mostly based on		
a) Boolean theorem b) De Morgan theorem c) standard theorem d)Algebraic theorem		eorem d)Algebraic theorem	
	6 is the highest-value of ten -bit binary number.		
	7. Digital systems have state.		
	8. Cyclic code are also called code.		
	9. The MSB of Binary number has weight of 512, the number consist of bits.		
	10. The digit that changes most often during counting is called the	·	
	11. A logic circuit that can store one bit of information is a	·	
	12. Memory devices that use electronic latching circuits are called 12. The duty cycle of a square ways is η'	·	
	13. The duty cycle of a square wave is%.		
	15. Pull-up resistors and pull-down resistors are used to keep a flow	ating terminal HIGH True/ False	
0.2	Answer the following questions. (Attempt any three)	(15)	
~· -	A) Explain and prove De-Morgan's theorems.		
	B) Prove NAND and NOR are universal gates.		
	C) Perform $(-4)_{10} - (-8)_{10}$ using 1's complement.		
	D) Minimize the expression using K-Map and realize using the ba	sic gates.	
	$Y = \Sigma m(1,2,9,10,11,14,15)$		
Q.3	A) Minimize expression using Tabular method.	(07)	
	$Y = \Sigma m (1,5,6,12,13,14) + d (2,4)$		
	B) Explain D-type positive edge- triggered flip-flop in details.	(08)	
	OR		
<u> </u>	B) Explain 2 bit Magnitude Comparator.		
Q.4 A) Give classification of counters and explain asynchronous 4-bit binary ripple up counter.		onary ripple up counter. (07)	
UK (A) Implement 3 bit Binary to Gray convertor using DLA (Programmable Logic Arrey)		mable Logic Array) (07)	
	B) What is meant by multiplexer? Explain with diagram and truth	table the Operation of (07)	
	4-to-1 line multiplexer.		