PARUL UNIVERSITY

FACULTY OF ENGINEERING \& TECHNOLOGY

B.Tech. Summer 2018-19 Examination

Semester: 3
Subject Code: 03105201
Subject Name: Digital Logic Design

Date: 29/05/2019
Time: 02:00pmto 04:00pm
Total Marks: 60

Instructions:

1. All questions are compulsory.
2. Figures to the right indicate full marks.
3. Make suitable assumptions wherever necessary.
4. Start new question on new page.
Q. 1 Objective Type Questions: (All are compulsory) (Each of one mark)
5. Any negative number is recognized by its
a) MSB
b) LSB
c) Bits
d) Nibble
6. The quantity of word is
a) 16 bits
b) 32 bits
c) 64 bits
d) 8 bits
7. 2's complement of 11001011 is
a) 01010111
b) 11010100
c) 00110101
d) 11100010
8. A logic circuit that provides a HIGH output for both inputs HIGH or both inputs LOW is
a) Ex-NOR gate
b) OR gate
c) Ex-OR gate
d) NAND gate
9. The Boolean algebra is mostly based on
a) Boolean theorem
b) De Morgan theorem
c) standard theorem d)Algebraic theorem
10. \qquad is the highest-value of ten -bit binary number.
11. Digital systems have \qquad state.
12. Cyclic code are also called \qquad code.
13. The MSB of Binary number has weight of 512 , the number consist of \qquad bits.
14. The digit that changes most often during counting is called the \qquad -
15. A logic circuit that can store one bit of information is a \qquad _.
16. Memory devices that use electronic latching circuits are called \qquad .
17. The duty cycle of a square wave is \qquad \%.
18. TTL requires a constant supply voltage of 8.0 V . True/ False
19. Pull-up resistors and pull-down resistors are used to keep a floating terminal HIGH. True/ False
Q. 2 Answer the following questions. (Attempt any three)
A) Explain and prove De-Morgan's theorems.
B) Prove NAND and NOR are universal gates.
C) Perform $(-4)_{10}-(-8)_{10}$ using 1 's complement.
D) Minimize the expression using K-Map and realize using the basic gates. $Y=\Sigma m(1,2,9,10,11,14,15)$
Q. 3 A) Minimize expression using Tabular method.
$\mathrm{Y}=\Sigma \mathrm{m}(1,5,6,12,13,14)+\mathrm{d}(2,4)$
B) Explain D-type positive edge- triggered flip-flop in details.

OR

B) Explain 2 bit Magnitude Comparator.
Q. 4 A) Give classification of counters and explain asynchronous 4-bit binary ripple up counter.

OR

A) Implement 3 bit Binary to Gray converter using PLA (Programmable Logic Array).
B) What is meant by multiplexer? Explain with diagram and truth table the Operation of

4-to-1 line multiplexer.

