Seat No: ____

Enrollment No: __ PARUL UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY B.Tech., Summer 2017 - 18 Examination

Seme Subje Subje	ect Name: Fluid Flow Operation	Date: 11/06/2018 Time: 2:00 pm to 4:30 pm Total Marks: 60	1	
Instr 1. All 2. Fig 3. Ma 4. Sta	uctions: questions are compulsory. gures to the right indicate full marks. ake suitable assumptions wherever necessary. art new question on new page.			
Q.1	Objective Type Questions -		(15)	
1.	The viscosity of ideal fluid zero. (True/False)			
2.	Velocity at the point of contact between the solid and liquid is zero. (True/	(False)		
3.	The viscosity of gaswith increase in temperature.			
4.	is the unit of viscosity in SI system.			
5.	Differential manometer measures the			
6.	The terminal velocity of a small sphere settling in a viscous fluid varies as	the		
	a. first power of its diameter.			
	b. inverse of the fluid viscosity.			
	c. inverse square of the difference in specific weights of solid & fluid			
7	u. square of the difference in specific weights of solid & fluid.			
7.	a Increases			
	c Remains constant d none of these			
8	What is potential flow			
0.	a. Flow of incompressible fluid b. Flow of non ideal fluid			
	c. Flow of irrotational fluid. d. Flow of an ideal fluid			
9.	The fluid in which the shearing stress within it is proportional to the veloci	ty gradient across the		
	sheared section, is called a fluid.	, , , ,		
10.	The length of the tube necessary for the boundary layer to reach the centre	of the tube and for fully		
	developed flow to be established is called the length.			
11.	Power loss in an orificemeter is that in a venturimeter.			
12.	Name the equation which is used to calculate the pressure difference in pac	ked bed?		
13.	Name the momentum balance Equation			
14.	The Reynolds no. for Turbulent flow is			
15.	Which of the following is not a dimension-less parameter ?			
	a. Euler number b.Specific gravity c.Fanning friction factor	d. None of these		
Q.2	Answer the following questions. (Attempt any three)		(15)	
	A. Derive the barometric equation for an incompressible fluid			
	B. Explain major and minor loss in pipe fittings			
	C. What is drag force, terminal velocity, sphericity, Equivalent diameter ,fanning friction factor ?			
	D. Air at 20 °C and 2 atm absolute pressure enters a finned tube steam he at an average velocity of 15m/s. it leaves the heater through a 65 mm	tube at 90 °C and 1.6 atm		
	absolute pressure. What is the average air velocity at the outlet			
Q.3	A) Give the classification of various types of fluid with exampleB) Derive Bernoulli's equation for steady-incompressible fluid flow and s	state assumptions made in	(07) (08)	

B) Explain the construction and working of orifice meter and also draw the Sketch of it. (08)

Q.4 A) A differential manometer is connected at the two points A and B as shown in figure given below. (07) At B air pressure is 9.81N/cm², find the pressure at point A?

OR

- A) Draw the neat sketch of centrifugal pump and explain the construction and working of (07) centrifugal pump
- B) The pump draws oil of specific gravity 0.8 from a storage tank and discharge into an over head (08) tank. The mechanical energy delivered by the pump to the fluid is 50J/Kg. The velocity at the suction and discharge point is 1m/s and 7 m/s. neglect friction loss and assuming kinetic correction factor to be unity. Calculate the pressure developed by the pump